116 research outputs found

    Modelling a wireless connected swarm of mobile robots

    Get PDF
    It is a characteristic of swarm robotics that modelling the overall swarm behaviour in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation such models would be critical for both overall validation of algorithm correctness and detailed parameter optimisation. We seek models with predictive power: models that allow us to determine the effect of modifying parameters in individual robots on the overall swarm behaviour. This paper presents results from a study to apply the probabilistic modelling approach to a class of wireless connected swarms operating in unbounded environments. The paper proposes a probabilistic finite state machine (PFSM) that describes the network connectivity and overall macroscopic behaviour of the swarm, then develops a novel robot-centric approach to the estimation of the state transition probabilities within the PFSM. Using measured data from simulation the paper then carefully validates the PFSM model step by step, allowing us to assess the accuracy and hence the utility of the model. © Springer Science + Business Media, LLC 2008

    Integrating daylighting and lighting in practice: Lessons learned from international case studies

    Get PDF
    This report presents lessons learned from twenty-five worldwide real-life case studies implementing the integration of daylighting and electric lighting. The case studies were monitored with respect to energy use for lighting, visual performance, non-visual performance, and users’ satisfaction. The monitoring is largely based on field measurements, but it is also complemented with simulations and calculations where needed. The report is divided in two parts. The first part provides an overview of the case studies and the overall lessons learned. The second part provides factsheets for each of the case studies; the factsheets include details on the monitoring, results, and specific lessons learned. Based on the lessons learned from the case studies, this report concludes that: • The energy demand for lighting is drastically reduced thanks to the combined effect of more efficient light sources, advances in controls, and raised awareness in the integration of daylighting and electric lighting. • Integrative lighting is currently driving the innovation in lighting technology and wider implementation is expected as knowledge in the field of non-visual requirements for lighting expands. • However, the current integration of the integrative lighting concept with daylighting in practice is limited, which may result in significant energy rebound (increases). • Daylighting integration is of utmost importance for achieving quality beyond energy savings. • Integrated daylighting and electric lighting design is facing new challenges: questions connected with comfort and health are yet to be answered

    The data hungry home

    Get PDF
    It's said that the pleasure is in the giving, not the receiving. This belief is validated by how humans interact with their family, friends and society as well as their gardens, homes, and pets. Yet for ubiquitous devices, this dynamic is reversed with devices as the donors and owners as the recipients. This paper explores an alternative paradigm where these devices are elevated, becoming members of Data Hungry Homes, allowing us to build relationships with them using the principles that we apply to family, pets or houseplants. These devices are developed to fit into a new concept of the home, can symbiotically interact with us and possess needs and traits that yield unexpected positive or negative outcomes from interacting with them. Such relationships could enrich our lives through our endeavours to “feed” our Data Hungry Homes, possibly leading us to explore new avenues and interactions outside and inside the home

    Downregulation of Integrin β4 Decreases the Ability of Airway Epithelial Cells to Present Antigens

    Get PDF
    Airway epithelial cells have been demonstrated to be accessory antigen presentation cells (APC) capable of activating T cells and may play an important role in the development of allergic airway inflammation of asthma. In asthmatic airways, loss of expression of the adhesion molecule integrin β4 (ITGB4) and an increase in Th2 inflammation bias has been observed in our previous study. Given that ITGB4 is engaged in multiple signaling pathways, we studied whether disruption of ITGB4-mediated cell adhesion may contribute to the adaptive immune response of epithelial cells, including their ability to present antigens, induce the activate and differentiate of T cells. We silenced ITGB4 expression in bronchial epithelial cells with an effective siRNA vector and studied the effects of ITGB4 silencing on the antigen presentation ability of airway epithelial cells. T cell proliferation and cytokine production was investigated after co-culturing with ITGB4-silenced epithelial cells. Surface expression of B7 homologs and the major histocompatibility complex (MHC) class II was also detected after ITGB4 was silenced. Our results demonstrated that silencing of ITGB4 resulted in impaired antigen presentation processes and suppressed T cell proliferation. Meanwhile, decrease in Th1 cytokine production and increase in Th17 cytokine production was induced after co-culturing with ITGB4-silenced epithelial cells. Moreover, HLA-DR was decreased and the B7 homologs expression was different after ITGB4 silencing. Overall, this study suggested that downregulation of ITGB4 expression in airway epithelial cells could impair the antigen presentation ability of these cells, which further regulate airway inflammation reaction in allergic asthma

    CD8 positive T cells express IL-17 in patients with chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible chronic inflammatory disease of the lung. The nature of the immune reaction in COPD raises the possibility that IL-17 and related cytokines may contribute to this disorder. This study analyzed the expression of IL-17A and IL-17F as well as the phenotype of cells producing them in bronchial biopsies from COPD patients.</p> <p>Methods</p> <p>Bronchoscopic biopsies of the airway were obtained from 16 COPD subjects (GOLD stage 1-4) and 15 control subjects. Paraffin sections were used for the investigation of IL-17A and IL-17F expression in the airways by immunohistochemistry, and frozen sections were used for the immunofluorescence double staining of IL-17A or IL-17F paired with CD4 or CD8. In order to confirm the expression of IL-17A and IL-17F at the mRNA level, a quantitative RT-PCR was performed on the total mRNA extracted from entire section or CD8 positive cells selected by laser capture microdissection.</p> <p>Results</p> <p>IL-17F immunoreactivity was significantly higher in the bronchial biopsies of COPD patients compared to control subjects (<it>P </it>< 0.0001). In the submucosa, the absolute number of both IL-17A and IL-17F positive cells was higher in COPD patients (<it>P </it>< 0.0001). After adjusting for the total number of cells in the submucosa, we still found that more cells were positive for both IL-17A (<it>P </it>< 0.0001) and IL-17F (<it>P </it>< 0.0001) in COPD patients compared to controls. The mRNA expression of IL-17A and IL-17F in airways of COPD patients was confirmed by RT-PCR. The expression of IL-17A and IL-17F was co-localized with not only CD4 but also CD8, which was further confirmed by RT-PCR on laser capture microdissection selected CD8 positive cells.</p> <p>Conclusion</p> <p>These findings support the notion that Th17 cytokines could play important roles in the pathogenesis of COPD, raising the possibility of using this mechanism as the basis for novel therapeutic approaches.</p

    Mottness at finite doping and charge instabilities in cuprates

    Get PDF
    The intrinsic instability of underdoped copper oxides towards inhomogeneous states is one of the central puzzles of the physics of correlated materials. The influence of the Mott physics on the doping-temperature phase diagram of copper oxides represents a major issue that is subject of intense theoretical and experimental effort. Here, we investigate the ultrafast electron dynamics in prototypical single-layer Bi-based cuprates at the energy scale of the O-2p\u2192Cu-3d charge-transfer (CT) process. We demonstrate a clear evolution of the CT excitations from incoherent and localized, as in a Mott insulator, to coherent and delocalized, as in a conventional metal. This reorganization of the high-energy degrees of freedom occurs at the critical doping pcr 430.16 irrespective of the temperature, and it can be well described by dynamical mean field theory calculations. We argue that the onset of the low-temperature charge instabilities is the low-energy manifestation of the underlying Mottness that characterizes the p<pcr region of the phase diagram. This discovery sets a new framework for theories of charge order and low-temperature phases in underdoped copper oxides. ArXI

    cIAP1/2 Are Direct E3 Ligases Conjugating Diverse Types of Ubiquitin Chains to Receptor Interacting Proteins Kinases 1 to 4 (RIP1–4)

    Get PDF
    The RIP kinases have emerged as essential mediators of cellular stress that integrate both extracellular stimuli emanating from various cell-surface receptors and signals coming from intracellular pattern recognition receptors. The molecular mechanisms regulating the ability of the RIP proteins to transduce the stress signals remain poorly understood, but seem to rely only partially on their kinase activities. Recent studies on RIP1 and RIP2 have highlighted the importance of ubiquitination as a key process regulating their capacity to activate downstream signaling pathways. In this study, we found that XIAP, cIAP1 and cIAP2 not only directly bind to RIP1 and RIP2 but also to RIP3 and RIP4. We show that cIAP1 and cIAP2 are direct E3 ubiquitin ligases for all four RIP proteins and that cIAP1 is capable of conjugating the RIPs with diverse types of ubiquitin chains, including linear chains. Consistently, we show that repressing cIAP1/2 levels affects the activation of NF-κB that is dependent on RIP1, -2, -3 and -4. Finally, we identified Lys51 and Lys145 of RIP4 as two critical residues for cIAP1-mediated ubiquitination and NF-κB activation

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Pathogen-Mediated Proteolysis of the Cell Death Regulator RIPK1 and the Host Defense Modulator RIPK2 in Human Aortic Endothelial Cells

    Get PDF
    Porphyromonas gingivalis is the primary etiologic agent of periodontal disease that is associated with other human chronic inflammatory diseases, including atherosclerosis. The ability of P. gingivalis to invade and persist within human aortic endothelial cells (HAEC) has been postulated to contribute to a low to moderate chronic state of inflammation, although how this is specifically achieved has not been well defined. In this study, we demonstrate that P. gingivalis infection of HAEC resulted in the rapid cleavage of receptor interacting protein 1 (RIPK1), a mediator of tumor necrosis factor (TNF) receptor-1 (TNF-R1)-induced cell activation or death, and RIPK2, a key mediator of both innate immune signaling and adaptive immunity. The cleavage of RIPK1 or RIPK2 was not observed in cells treated with apoptotic stimuli, or cells stimulated with agonists to TNF-R1, nucleotide oligomerization domain receptor 1(NOD1), NOD2, Toll-like receptor 2 (TLR2) or TLR4. P. gingivalis-induced cleavage of RIPK1 and RIPK2 was inhibited in the presence of a lysine-specific gingipain (Kgp) inhibitor. RIPK1 and RIPK2 cleavage was not observed in HAEC treated with an isogenic mutant deficient in the lysine-specific gingipain, confirming a role for Kgp in the cleavage of RIPK1 and RIPK2. Similar proteolysis of poly (ADP-ribose) polymerase (PARP) was observed. We also demonstrated direct proteolysis of RIPK2 by P. gingivalis in a cell-free system which was abrogated in the presence of a Kgp-specific protease inhibitor. Our studies thus reveal an important role for pathogen-mediated modification of cellular kinases as a potential strategy for bacterial persistence within target host cells, which is associated with low-grade chronic inflammation, a hallmark of pathogen-mediated chronic inflammatory disorders

    VLPs and particle strategies for cancer vaccines

    Get PDF
    n/
    corecore