145 research outputs found
Light Meson Dynamics Workshop. Mini proceedings
The mini-proceedings of the Light Meson Dynamics Workshop held in Mainz from
February 10th to 12th, 2014, are presented. The web page of the conference,
which contains all talks, can be found at
https://indico.cern.ch/event/287442/overview .Comment: 46 pages, 17 contributions. Editors: W. Gradl, P. Masjuan, M.
Ostrick, and S. Schere
A new measurement of the neutron detection efficiency for the NaI Crystal Ball detector
We report on a measurement of the neutron detection efficiency in NaI
crystals in the Crystal Ball detector obtained from a study of single p0
photoproduction on deuterium using the tagged photon beam at the Mainz
Microtron. The results were obtained up to a neutron energy of 400 MeV. They
are compared to previous measurements made more than 15 years ago at the pion
beam at the BNL AGS
Measurement of pi^0 photoproduction on the proton at MAMI C
Differential cross sections for the gamma p -> pi^0 p reaction have been
measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C,
up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a
fine energy and angular binning, increase the existing quantity of pi^0
photoproduction data by ~47%. Owing to the unprecedented statistical accuracy
and the full angular coverage, the results are sensitive to high partial-wave
amplitudes. This is demonstrated by the decomposition of the differential cross
sections in terms of Legendre polynomials and by further comparison to model
predictions. A new solution of the SAID partial-wave analysis obtained after
adding the new data into the fit is presented.Comment: 13 pages, 12 figures, 1 tabl
Helicity-dependent cross sections and double-polarization observable E in η photoproduction from quasifree protons and neutrons
Precise helicity-dependent cross sections and the double-polarization observable E were measured for η
photoproduction from quasifree protons and neutrons bound in the deuteron. The η → 2γ and η → 3π0 → 6γ
decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The
measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz.
A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon
beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with
the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results
show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off
the neutron appears only in reactions with antiparallel photon and nucleon spin (σ1/2). It is absent for reactions
with parallel spin orientation (σ3/2) and thus very probably related to partial waves with total spin 1/2. The
behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them with Legendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which
uses an interference of P11 and S11 partial waves to explain the narrow structure
Determination of the scalar polarizabilities of the proton using beam asymmetry in Compton scattering
The scalar dipole polarizabilities, and , are
fundamental properties related to the internal dynamics of the nucleon. The
currently accepted values of the proton polarizabilities were determined by
fitting to unpolarized proton Compton scattering cross section data. The
measurement of the beam asymmetry in a certain kinematical range
provides an alternative approach to the extraction of the scalar
polarizabilities. At the Mainz Microtron (MAMI) the beam asymmetry was measured
for Compton scattering below pion photoproduction threshold for the first time.
The results are compared with model calculations and the influence of the
experimental data on the extraction of the scalar polarizabilities is
determined.Comment: 6 pages, 5 figure
Characterization of the ELM-free Negative Triangularity Edge on DIII-D
Tokamak plasmas with strong negative triangularity (NT) shaping typically
exhibit fundamentally different edge behavior than conventional L-mode or
H-mode plasmas. Over the entire DIII-D database, plasmas with sufficiently
negative triangularity are found to be inherently free of edge localized modes
(ELMs), even at injected powers well above the predicted L-H power threshold. A
critical triangularly (), consistent with
inherently ELM-free operation is identified, beyond which access to the second
stability region for infinite- ballooning modes closes on DIII-D. It is also
possible to close access to this region, and thereby prevent an H-mode
transition, at weaker average triangularities
() provided that at least one of the two
x-points is still sufficiently negative. Enhanced low field side magnetic
fluctuations during ELM-free operation are consistent with additional
turbulence limiting the NT edge gradient. Despite the reduced upper limit on
the pressure gradient imposed by ballooning stability, NT plasmas are able to
support small pedestals and are typically characterized by an enhancement of
edge pressure gradients beyond those found in traditional L-mode plasmas.
Further, the pressure gradient inside of this small pedestal is unusually
steep, allowing access to high core performance that is competitive with other
ELM-free regimes previously achieved on DIII-D. Since ELM-free operation in NT
is linked directly to the magnetic geometry, NT fusion pilot plants are
predicted to maintain advantageous edge conditions even in burning plasma
regimes, potentially eliminating reactor core-integration issues caused by
ELMs
Measurement of the beam-helicity asymmetry in photoproduction of π0η pairs on carbon, aluminum, and lead
The beam-helicity asymmetry was measured, for the first time, in photoproduction of pairs on carbon, aluminum, and lead, with the A2 experimental setup at MAMI. The results are compared to an earlier measurement on a free proton and to the corresponding theoretical calculations. The Mainz model is used to predict the beam-helicity asymmetry for the nuclear targets. The present results indicate that the photoproduction mechanism for pairs on nuclei is similar to photoproduction on a free nucleon. This process is dominated by the partial wave with the intermediate state
Recommended from our members
Accelerating discoveries at DIII-D with the Integrated Research Infrastructure
DIII-D research is being accelerated by leveraging high performance computing (HPC) and data resources available through the National Energy Research Scientific Computing Center (NERSC) Superfacility initiative. As part of this initiative, a high-resolution, fully automated, whole discharge kinetic equilibrium reconstruction workflow was developed that runs at the NERSC for most DIII-D shots in under 20 min. This has eliminated a long-standing research barrier and opened the door to more sophisticated analyses, including plasma transport and stability. These capabilities would benefit from being automated and executed within the larger Department of Energy Advanced Scientific Computing Research program’s Integrated Research Infrastructure (IRI) framework. The goal of IRI is to empower researchers to meld DOE’s world-class research tools, infrastructure, and user facilities seamlessly and securely in novel ways to radically accelerate discovery and innovation. For transport, we are looking at producing flux matched profiles and also using particle tracing to predict fast ion heat deposition from neutral beam injection before a shot takes place. Our starting point for evaluating plasma stability focuses on the pedestal limits that must be navigated to achieve better confinement. This information is meant to help operators run more effective experiments, so it needs to be available rapidly inside the DIII-D control room. So far this has been achieved by ensuring the data is available with existing tools, but as more novel results are produced new visualization tools must be developed. In addition, all of the high-quality data we have generated has been collected into databases that can unlock even deeper insights. This has already been leveraged for model and code validation studies as well as for developing AI/ML surrogates. The workflows developed for this project are intended to serve as prototypes that can be replicated on other experiments and can be run to provide timely and essential information for ITER, as well as next stage fusion power plants
A Precise Multi-Channel QDC FEE utilizing FPGAs as Discriminators and Delay Elements Based on the TRB3 as TDC and Readout Platform
- …
