729 research outputs found

    AMADEOS SysML Profile for SoS Conceptual Modeling

    Get PDF
    International audienc

    Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP

    Full text link
    We have recently shown that the abundance of the renal sodium (Na)/inorganic phosphate (Pi) cotransporter NaPi-IIa is increased in the absence of the GABA(A) receptor-associated protein (GABARAP). Accordingly, GABARAP-deficient mice have a reduced urinary excretion of Pi. However, their circulating levels of Pi do not differ from wild-type animals, suggesting the presence of a compensatory mechanism responsible for keeping serum Pi values constant. Here, we aimed first to identify the molecular basis of this compensation by analyzing the expression of Na/Pi cotransporters known to be expressed in the kidney and intestine. We found that, in the kidney, the upregulation of NaPi-IIa is not accompanied by changes on the expression of either NaPi-IIc or PiT2, the other cotransporters known to participate in renal Pi reabsorption. In contrast, the intestinal expression of NaPi-IIb is downregulated in mutant animals, suggesting that a reduced intestinal absorption of Pi could contribute to maintain a normophosphatemic status despite the increased renal retention. The second goal of this work was to study whether the alterations on the expression of NaPi-IIa induced by chronic dietary Pi are impaired in the absence of GABARAP. Our data indicate that, in response to high Pi diets, GABARAP-deficient mice downregulate the expression of NaPi-IIa to levels comparable to those seen in wild-type animals. However, in response to low Pi diets, the upregulation of NaPi-IIa is greater in the mutant mice. Thus, both the basal expression and the dietary-induced upregulation of NaPi-IIa are increased in the absence of GABARAP

    The value of 18F-FDG-PET/CT imaging for sinonasal malignant melanoma

    Get PDF
    The aim this study was to evaluate imaging findings using position emission tomography (PET) in combination with computed tomography (CT) and 18F-fluorodeoxyglucose (18F-FDG) in sinonasal malignant melanoma (SNMM) of the head and neck in a retrospective analysis of a consecutive cohort of patients. 18F-FDG-PET/CT examinations were performed for initial staging and compared with CT or magnetic resonance tomography (MRI), and 18F-FDG-PET alone. Medical records were reviewed retrospectively with regard to the location and the size of the tumor. Furthermore, locoregional and distant metastases with a consecutive change in therapy detected by 18F-FDG-PET/CT were assessed. Ten patients suffering from sinonasal malignant melanoma were staged and followed by 18F-FDG-PET/CT imaging. A total of 34 examinations were obtained. 18F-FDG-PET/CT depicted all primary tumors adequately. Aside from one cerebral metastasis all regional and distant metastases were truly identified by using this method. In summary, if available, 18F-FDG-PET/CT is a valuable imaging modality for staging and re-staging sinonasal malignant melanoma to evaluate expansion of the primary tumor, locoregional disease, and distant metastase

    Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats

    Get PDF
    Background: Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. Results: The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. Conclusions: These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration

    Temperature dependence of steady-state and presteady-state kinetics of a type IIb Na+/Pi cotransporter

    Full text link
    The temperature dependence of the transport kinetics of flounder Na(+)-coupled inorganic phosphate (P(i)) cotransporters (NaPi-IIb) expressed in Xenopus oocytes was investigated using radiotracer and electrophysiological assays. (32)P(i) uptake was strongly temperature-dependent and decreased by approximately 80% at a temperature change from 25 degrees C to 5 degrees C. The corresponding activation energy (E (a)) was approximately 14 kcal mol(-1) for the cotransport mode. The temperature dependence of the cotransport and leak modes was determined from electrogenic responses to 1 mM P(i) and phosphonoformic acid (PFA), respectively, under voltage clamp. The magnitude of the P(i)- and PFA-induced changes in holding current decreased with temperature. E (a) at -100 mV for the cotransport and leak modes was approximately 16 kcal mol(-1) and approximately 11 kcal mol(-1), respectively, which suggested that the leak is mediated by a carrier, rather than a channel, mechanism. Moreover, E (a) for cotransport was voltage-independent, suggesting that a major conformational change in the transport cycle is electroneutral. To identify partial reactions that confer temperature dependence, we acquired presteady-state currents at different temperatures with 0 mM P(i) over a range of external Na(+). The relaxation time constants increased, and the peak time constant shifted toward more positive potentials with decreasing temperature. Likewise, there was a depolarizing shift of the charge distribution, whereas the total available charge and apparent valency predicted from single Boltzmann fits were temperature-independent. These effects were explained by an increased temperature sensitivity of the Na(+)-debinding rate compared with the other voltage-dependent rate constants

    Post-transplant recurrence of steroid resistant nephrotic syndrome in children: the Italian experience

    Get PDF
    Background: Steroid resistant nephrotic syndrome (SRNS) is a frequent cause of end stage renal disease in children and post-transplant disease recurrence is a major cause of graft loss. Methods: We identified all children with SRNS who underwent renal transplantation in Italy, between 2005 and 2017. Data were retrospectively collected for the presence of a causative gene mutation, sex, histology, duration of pre-transplant dialysis, age at onset and transplant, HLA matching, recurrence, therapy for recurrence, and graft survival. Results: 101 patients underwent a first and 22 a second renal transplant. After a median follow-up of 58.5 months, the disease recurred on the first renal transplant in 53.3% of patients with a non-genetic and none with a genetic SRNS. Age at transplant > 9 years and the presence of at least one HLA-AB match were independent risk factors for recurrence. Duration of dialysis was longer in children with relapse, but did not reach statistical significance. Overall, 24% of patients lost the first graft, with recurrence representing the commonest cause. Among 22 patients who underwent a second transplant, 5 suffered of SRNS recurrence. SRNS relapsed in 5/9 (55%) patients with disease recurrence in their first transplant and 2 of them lost the second graft. Conclusions: Absence of a causative mutation represents the major risk factor for post-transplant recurrence in children with SRNS, while transplant can be curative in genetic SRNS. A prolonged time spent on dialysis before transplantation has no protective effect on the risk of relapse and should not be encouraged. Retransplantation represents a second chance after graft loss for recurrence

    KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection

    Get PDF
    Funding Information: This research was supported in part by Cancer Research Switzerland , Switzerland ( KFS-4091-02-2017 ); KFSP-PrecisionMS and HMZ ImmunoTargET of the University of Zurich , Switzerland; the Cancer Research Center Zurich , Switzerland; the Vontobel Foundation , Switzerland; the Baugarten Foundation , Switzerland; the Sobek Foundation , Germany; the Swiss Vaccine Research Institute , Switzerland; Roche , Switzerland; Novartis , Switzerland; and the Swiss National Science Foundation , Switzerland ( 310030B_182827 and CRSII5_180323 ). A.M.M. was funded by a National Institutes of Health , United States, grant ( R01 CA189806 ). N.C. was supported by a career advancement grant from the University of Zurich , Switzerland ( FK-18-026 ). D.M. and M.B. were supported by MD-PhD fellowships from the Swiss National Science Foundation , Switzerland, and the Swiss Academy of Medical Sciences , Switzerland ( 323530_145247 and 323630_19938 ).Peer reviewedPublisher PD
    corecore