677 research outputs found

    3D photospheric velocity field of a Supergranular cell

    Full text link
    We investigate the plasma flow properties inside a Supergranular (SG) cell, in particular its interaction with small scale magnetic field structures. The SG cell has been identified using the magnetic network (CaII wing brightness) as proxy, applying the Two-Level Structure Tracking (TST) to high spatial, spectral and temporal resolution observations obtained by IBIS. The full 3D velocity vector field for the SG has been reconstructed at two different photospheric heights. In order to strengthen our findings, we also computed the mean radial flow of the SG by means of cork tracing. We also studied the behaviour of the horizontal and Line of Sight plasma flow cospatial with cluster of bright CaII structures of magnetic origin to better understand the interaction between photospheric convection and small scale magnetic features. The SG cell we investigated seems to be organized with an almost radial flow from its centre to the border. The large scale divergence structure is probably created by a compact region of constant up-flow close to the cell centre. On the edge of the SG, isolated regions of strong convergent flow are nearby or cospatial with extended clusters of bright CaII wing features forming the knots of the magnetic network.Comment: 7 pages, submitted to A&A, referee's comments include

    Stellar turbulent convection: the multiscale nature of the solar magnetic signature

    Get PDF
    The multiscale dynamics associated with turbulent convection present in physical systems governed by very high Rayleigh numbers still remains a vividly disputed topic in the community of astrophysicists, and in general, among physicists dealing with heat transport by convection. The Sun is a very close star for which detailed observations and estimations of physical properties on the surface, connected to the processes of the underlying convection zone, are possible. This makes the Sun a unique natural laboratory in which to investigate turbulent convection in the hard turbulence regime, a regime typical of systems characterized by high values of the Rayleigh number. In particular, it is possible to study the geometry of convection using the photospheric magnetic voids (or simply voids), the quasi-polygonal quiet regions nearly devoid of magnetic elements, which cover the whole solar surface and which form the solar magnetic network. This work presents the most extensive statistics, both in the spatial scales studied (1-80 Mm) and in the temporal duration (SC 23 and SC 24), to investigate the multiscale nature of solar magnetic patterns associated with the turbulent convection of our star. We show that the size distribution of the voids, in the 1-80 Mm range, for the 317, 870 voids found in the 692 analyzed magnetograms, is basically described by an exponential function

    Evolution of solar granulation fields from THEMIS-IPM time series

    Get PDF
    The temporal evolution of solar granulation has been investigated using a time series of high spatial and spectral resolution images acquired at the THEMIS solar telescope (Observatorio del Teide, Tenerife) using the IPM observing mode. In order to investigate different physical properties of solar granulation (associated horizontal velocity fields, lifetimes, intensity and geometry evolution), we identify and track solar granules automatically. We discuss the obtained results and compare them with results reported inthe literature. In order to overcome problems of atmospheric distortions, we also implement a FORTRAN95 code for the application of the Phase Diversity technique that is planned to be used at the THEMIS telescope

    Planetary detection limits taking into account stellar noise. II. Effect of stellar spot groups on radial-velocities

    Full text link
    The detection of small mass planets with the radial-velocity technique is now confronted with the interference of stellar noise. HARPS can now reach a precision below the meter-per-second, which corresponds to the amplitudes of different stellar perturbations, such as oscillation, granulation, and activity. Solar spot groups induced by activity produce a radial-velocity noise of a few meter-per-second. The aim of this paper is to simulate this activity and calculate detection limits according to different observational strategies. Based on Sun observations, we reproduce the evolution of spot groups on the surface of a rotating star. We then calculate the radial-velocity effect induced by these spot groups as a function of time. Taking into account oscillation, granulation, activity, and a HARPS instrumental error of 80 cm/s, we simulate the effect of different observational strategies in order to efficiently reduce all sources of noise. Applying three measurements per night of 10 minutes every three days, 10 nights a month seems the best tested strategy. Depending on the level of activity considered, from log(R'_HK)= -5 to -4.75, this strategy would allow us to find planets of 2.5 to 3.5 Earth masses in the habitable zone of a K1V dwarf. Using Bern's model of planetary formation, we estimate that for the same range of activity level, 15 to 35 % of the planets between 1 and 5 Earth masses and with a period between 100 and 200 days should be found with HARPS. A comparison between the performance of HARPS and ESPRESSO is also emphasized by our simulations. Using the same optimized strategy, ESPRESSO could find 1.3 Earth mass planets in the habitable zone of early-K dwarfs. In addition, 80 % of planets with mass between 1 and 5 Earth masses and with a period between 100 and 200 days could be detected.Comment: 11 pages, 11 figures, accepted for publication in A&

    Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects

    Full text link
    The radial velocity signature of stellar noise is small, around the meter-per-second, but already too much for the detection of Earth mass planets in habitable zones. In this paper, we address the important role played by observational strategies in averaging out the radial velocity signature of stellar noise. We also derive the planetary mass detection limits expected in presence of stellar noise. We start with HARPS asteroseismology measurements for 4 stars (beta Hyi, alpha Cen A, mu Ara and tau Ceti) available in the ESO archive plus very precise measurements of alpha Cen B. This sample covers different spectral types, from G2 to K1 and different evolutionary stage, from subgiant to dwarf stars. Since the span of our data ranges between 5 to 8 days, we will have access to oscillation modes and granulation phenomena, without important contribution of activity noise which is present at larger time scales. For those 5 stars, we generate synthetic radial velocity measurements after fitting corresponding models of stellar noise in Fourier space. These measurements allows us to study the radial velocity variation due to stellar noise for different observational strategies as well as the corresponding planetary mass detection limits. Applying 3 measurements per night of 10 minutes exposure each, 2 hours apart, seems to average out most efficiently the stellar noise considered. For quiet K1V stars as alpha Cen B, such a strategy allows us to detect planets of ~3 times the mass of Earth with an orbital period of 200 days, corresponding to the habitable zone of the star. Since activity is not yet included in our simulation, these detection limits correspond to a case, which exist, where the host star has few magnetic features. In this case stellar noise is dominated by oscillation modes and granulation phenomena.Comment: 12 pages, 6 figures, Accepted for publication in A&

    Imaging Spectropolarimetry with IBIS II: on the fine structure of G-band bright features

    Full text link
    We present new results from first observations of the quiet solar photosphere performed through the Interferometric BIdimensional Spectrometer (IBIS) in spectropolarimetric mode. IBIS allowed us to measure the four Stokes parameters in the FeI 630.15 nm and FeI 630.25 nm lines with high spatial and spectral resolutions for 53 minutes; the polarimetric sensitivity achieved by the instrument is 0.003 the continuum intensity level. We focus on the correlation which emerges between G-band bright feature brightness and magnetic filling factor of ~ 1000 G (kG) fields derived by inverting Stokes I and V profiles. More in detail, we present the correlation first in a pixel-by-pixel study of an approximatively 3 arcsec wide bright feature (a small network patch) and then we show that such a result can be extended to all the bright features found in the dataset at any instant of the time sequence. The higher the kG filling factor associated to a feature the higher the brightness of the feature itself. Filling factors up to about 35 % are obtained for the brightest features. Considering the values of the filling factors derived from the inversion analysis of spectropolarimetric data and the brightness variation observed in G-band data we put forward an upper limit for the smallest scale over which magnetic flux concentrations in intergranular lanes produce a G-band brightness enhancement (~ 0.1''). Moreover, the brightness saturation observed for feature sizes comparable to the resolution of the observations is compatible with large G-band bright features being clusters of sub-arcsecond bright points. This conclusion deserves to be confirmed by forthcoming spectropolarimetric observations at higher spatial resolution.Comment: 10 pages, 7 figures, 1 table - Accepted for publication on Ap

    Endometriosis in the time of internet: how web navigation affects women with endometriosis

    Get PDF
    Objectives: Patients often search for health-related information on the internet allthough this trend may have some benefits, it also has some risks, such as misinformation. The aim of this study is to evaluate how Internet information seeking affect the level of anxiety in patients with endometriosis. Materials and methods: This prospective observational study was conducted at our outpatient clinic between March 2019 and December 2020. We enrolled We enrolled all patients with a confirmed sonographic diagnosis of endometriosis who had sought information about the disease prior to our visit. We divided them into two groups based on the source of information (Internet only vs multiple sources). Before the visit, we asked women to fill-in validated questionnaires about anxiety, such as the Generalized Anxiety Disorder-7 (GAD) and the Spielberg State Trait Anxiety Inventory (STAI- Y6) and the Endometriosis Health Profile (EHP) − 5. After the visit, the STAI-Y6 was resubmitted to each woman. Results: We enrolled 200 women who filled-in the questionnaires: 46 reported the Internet as the only source of information, 52 sought information also from medically qualified sources, 74 consulted only healthcare professionals, and 28 resorted to medical journals. Women who used the Internet as their exclusive source of information were younger on average and their STAI-Y6 score after the visit was significantly lower compared to other group (34.1 ± 11.5 vs 42.1 ± 14.7, p =.001). Moreover, the difference between the STAI-Y6 scores before and after our assessment was higher in these women (-18.3 ± 14.7 vs −10.3 ± 16.5, p =.003). Conclusions: Women who sought information online were younger, had lower levels of state trait anxiety after our medical evaluation, and a had a greater reduction in anxiety levels after our examination compared to women who consulted other sources to learn more about endometriosis.KEY MESSAGES Women using only Internet are younger than those who use other sources of information. Women who researched symptoms online showed higher pre-examination anxiety levels. Patients with severe pain symptoms consulted both the internet and professionals

    A catalogue of observed geo-effective CME/ICME characteristics

    Full text link
    One of the goals of Space Weather studies is to achieve a better understanding of impulsive phenomena, such as Coronal Mass Ejections (CMEs), in order to improve our ability to forecast them and mitigate the risk to our technologically driven society. The essential part of achieving this goal is to assess the performance of forecasting models. To this end, the quality and availability of suitable data are of paramount importance. In this work, we have merged already publicly available data of CMEs from both in-situ and remote instrumentation in order to build a database of CME properties. To evaluate the accuracy of such a database and confirm the relationship between in-situ and remote observations, we have employed the drag-based model (DBM) due to its simplicity and inexpensive cost of computational resources. In this study, we have also explored the parameter space for the drag parameter and solar wind speed using a Monte Carlo approach to evaluate how well the DBM determines the propagation of CMEs for the events in the dataset. The dataset of geoeffective CMEs constructed as a result of this work provides validation of the initial hypothesis about DBM, and solar wind speed and also yields further insight into CME features like arrival time, arrival speed, lift-off time, etc. Using a data-driven approach, this procedure allows us to present a homogeneous, reliable, and robust dataset for the investigation of CME propagation. On the other hand, possible CME events are identified where DBM approximation is not valid due to model limitations and higher uncertainties in the input parameters, those events require more thorough investigation

    Energetic Galaxy-Wide Outflows in High-Redshift Ultraluminous Infrared Galaxies Hosting AGN Activity

    Get PDF
    We present integral field spectroscopy observations, covering the [O III]4959,5007 emission-line doublet of eight high-redshift (z=1.4-3.4) ultra-luminous infrared galaxies (ULIRGs) that host Active Galactic Nuclei (AGN) activity, including known sub-millimetre luminous galaxies (SMGs). The targets have moderate radio luminosities that are typical of high-redshift ULIRGs (L(1.4GHz)=10^(24)-10^(25)W/Hz) and therefore are not radio-loud AGN. We de-couple kinematic components due to the galaxy dynamics and mergers from those due to outflows. We find evidence in the four most luminous systems (L([O III])\u3e~10^(43)erg/s) for the signatures of large-scale energetic outflows: extremely broad [O III] emission (FWHM ~ 700-1400km/s) across ~4-15kpc, with high velocity offsets from the systemic redshifts (up to ~850km/s). The four less luminous systems have lower quality data displaying weaker evidence for spatially extended outflows. We estimate that these outflows are potentially depositing energy into their host galaxies at considerable rates (~10^(43)-10^(45)erg/s); however, due to the lack of constraints on the density of the outflowing material and the structure of the outflow, these estimates should be taken as illustrative only. Based on the measured maximum velocities (v(max)~400-1400km/s) the outflows observed are likely to unbind some fraction of the gas from their host galaxies, but are unlikely to completely remove gas from the galaxy haloes. By using a combination of energetic arguments and a comparison to ULIRGs without clear evidence for AGN activity, we show that the AGN activity could be the dominant power source for driving all of the observed outflows, although star formation may also play a significant role in some of the sources
    • …
    corecore