160 research outputs found

    Fault Diagnosis in DSL Networks using Support Vector Machines

    Get PDF
    The adequate operation for a number of service distribution networks relies on the e�ective maintenance and fault management of their underlay DSL infrastructure. Thus, new tools are required in order to adequately monitor and further diagnose anomalies that other segments of the DSL network cannot identify due to the pragmatic issues raised by hardware or software misconfigurations. In this work we present a fundamentally new approach for classifying known DSL-level anomalies by exploiting the properties of novelty detection via the employment of one-class Support Vector Machines (SVMs). By virtue of the imbalance residing in the training samples that consequently lead to problematic prediction outcomes when used within two-class formulations, we adopt the properties of one-class classification and construct models for independently identifying and classifying a single type of a DSL-level anomaly. Given the fact that the greater number of the installed Digital Subscriber Line Access Multiplexers (DSLAMs) within the DSL network of a large European ISP were misconfigured, thus unable to accurately flag anomalous events, we utilize as inference solutions the models derived by the one-class SVM formulations built by the known labels as flagged by the much smaller number of correctly configured DSLAMs in the same network in order to aid the classification aspect against the monitored unlabelled events. By reaching an average over 95% on a number of classification accuracy metrics such as precision, recall and F-score we show that one-class SVM classifiers overcome the biased classification outcomes achieved by the traditional two-class formulations and that they may constitute as viable and promising components within the design of future network fault management strategies. In addition, we demonstrate their superiority over commonly used two-class machine learning approaches such as Decision Trees and Bayesian Networks that has been used in the same context within past solutions. Keywords: Network management, Support Vector Machines, supervised learning, one-class classifiers, DSL anomalie

    Dye-Loaded Quatsomes Exhibiting FRET as Nanoprobes for Bioimaging

    Get PDF
    Fluorescent organic nanoparticles (FONs) are emerging as an attractive alternative to the well-established fluorescent inorganic nanoparticles or small organic dyes. Their proper design allows one to obtain biocompatible probes with superior brightness and high photostability, although usually affected by low colloidal stability. Herein, we present a type of FONs with outstanding photophysical and physicochemical properties in-line with the stringent requirements for biomedical applications. These FONs are based on quatsome (QS) nanovesicles containing a pair of fluorescent carbocyanine molecules that give rise to Förster resonance energy transfer (FRET). Structural homogeneity, high brightness, photostability, and high FRET efficiency make these FONs a promising class of optical bioprobes. Loaded QSs have been used for in vitro bioimaging, demonstrating the nanovesicle membrane integrity after cell internalization, and the possibility to monitor the intracellular vesicle fate. Taken together, the proposed QSs loaded with a FRET pair constitute a promising platform for bioimaging and theranostics

    Engineering DNA-grafted quatsomes as stable nucleic acid-responsive fluorescent nanovesicles

    Get PDF
    The development of artificial vesicles into responsive architectures capable of sensing the biological environment and simultaneously signaling the presence of a specific target molecule is a key challenge in a range of biomedical applications from drug delivery to diagnostic tools. Herein, the rational design of biomimetic DNA-grafted quatsome (QS) nanovesicles capable of translating the binding of a target molecule to amphiphilic DNA probes into an optical output is presented. QSs are synthetic lipid-based nanovesicles able to confine multiple organic dyes at the nanoscale, resulting in ultra-bright soft materials with attractiveness for sensing applications. Dye-loaded QS nanovesicles of different composition and surface charge are grafted with fluorescent amphiphilic nucleic acid-based probes to produce programmable FRET-active nanovesicles that operate as highly sensitive signal transducers. The photophysical properties of the DNA-grafted nanovesicles are characterized and the highly selective, ratiometric detection of clinically relevant microRNAs with sensitivity in the low nanomolar range are demonstrated. The potential applications of responsive QS nanovesicles for biosensing applications but also as functional nanodevices for targeted biomedical applications is envisaged

    The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin

    Get PDF
    The fibronectin receptor, alpha 5 beta 1, has been shown to be required for fibronectin matrix assembly and plays an important role in cell migration on fibronectin. However, it is not clear whether other fibronectin binding integrins can take the place of alpha 5 beta 1 during matrix assembly and cell migration. To test this, we expressed the human alpha v subunit in the CHO cell line CHO-B2 that lacks the alpha 5 subunit. We found that the human alpha v combined with CHO cell beta 1 to form the integrin alpha v beta 1. Cells that expressed alpha v beta 1 attached to and spread well on fibronectin-coated dishes, but did so less well on vitronectin-coated dishes. This, along with other data, indicated that alpha v beta 1 functions as a fibronectin receptor in CHO-B2 cells. The alpha v beta 1-expressing cells failed to produce a fibronectin matrix or to migrate on fibronectin, although the same cells transfected with alpha 5 do produce a matrix and migrate on fibronectin. The affinity of the alpha v beta 1-expressing cells for fibronectin was fourfold lower than that of the alpha 5 beta 1- expressing cells. In addition, alpha v beta 1 was distributed diffusely throughout the cell surface, whereas alpha 5 beta 1 was localized to focal adhesions when cells were seeded onto fibronectin-coated surfaces. Thus, of the two fibronectin receptors, alpha v beta 1 and alpha 5 beta 1, only alpha 5 beta 1 supports fibronectin matrix assembly and promotes cell migration on fibronectin in the CHO-B2 cells. Possible reasons for this difference in the activities of alpha v beta 1 and alpha 5 beta 1 include the lower affinity of alpha v beta 1 for fibronectin and the failure of this integrin to localize in adhesion plaques on a fibronectin substrate. These results show that two integrins with similar ligand specificities and cell attachment functions may be quite different in their ability to support fibronectin matrix assembly and cell motility on fibronectin

    Survival and dispersal routes of head-started loggerhead sea turtle (Caretta caretta) post-hatchlings in the Mediterranean Sea

    Full text link
    [EN] Several loggerhead sea turtle (Caretta caretta) nesting events have been recorded along Spain's Mediterranean coast, outside its known nesting range, in recent years. In view of the possible expansion of its nesting range and considering the conservation status of this species, management measures like nest protection and head-start programs have been implemented. To study the dispersal behavior and survival of head-started loggerheads, 19 post-hatchlings from three nesting events were satellite tracked after their release in three consecutive years (2015-2017). This paper presents the first study of survival probabilities and dispersal movements of loggerhead post-hatchlings in the Mediterranean basin. Monitored post-hatchlings dispersed over large areas using variable routes, mainly off the continental shelf. Nonetheless, post-hatchlings dispersed to high-productivity warmer areas during the coldest months of monitoring. These areas might be optimum for their survival and development. We observed differences regarding dispersal orientation and routes among individuals, even from the same nest, release date, and location. Our survival models contributed to improving current survival estimates for sea turtle post-hatchlings. We observed a high probability of survival in head-started individuals during the first months after release, usually the most critical period after reintroduction. The data did not support an effect of habitat (neritic or oceanic) in survival, or an effect of the region (Balearic sea or Alboran sea) in survival probability. Differences in survival between nests were observed. These differences might be related to parasitic infections suffered during the head-starting period. This study shows that nest management measures may contribute to the conservation and range expansion of the loggerhead turtle population in the western Mediterranean.This satellite study was funded by Universitat Politecnica de Valencia, Ministerio de Agricultura y Medio Ambiente (ref: 16MNSV006), Ministerio de Economia, Industria y Competitividad (ref: CGL2011-30413), Fundacion CRAM, Fundacion Hombre y Territorio and Eduardo J. Belda. Corresponding author, S. Abalo, was supported by a Ph.D. grant (FPU) from Ministerio de Educacion, Cultura y Deporte (Spain). J. Tomas is also supported by project Prometeo II (2015) of Generalitat Valenciana and project INDICIT of the European Commission, Environment Directorate-General. We are extremely thankful to the entities that have collaborated: we thank all professionals at the Oceanografic, especially at the ARCA Rehabilitation Center, for their many efforts and whole-hearted dedication to the best animal care. In particular, we are grateful to the Conselleria d'Agricultura, Medi Ambient, Canvi Climatic i Desenvolupament Rural of the Valencia Community Regional Government. We also thank the professionals at Centro de Recuperacion de Animales Marinos (CRAM) for their dedication and animal care. We are thankful to the Marine Zoology Unit of the University of Valencia, NGO Xaloc, EQUINAC, Aquarium of Sevilla, Donana Biological Station (EBD-CSIC) and to involved professionals at Consejeria de Medio Ambiente y Ordenacion del Territorio (CMAOT) of Junta de Andalucia, especially at the Andalusian Marine Environment Management Center (CEGMA) for their efforts with animal care, logistics for release events and necropsy of "Rabiosa". We are particularly grateful to the people who called 112 to report a nesting event and to the nest custody volunteers. Thanks are due to the staff of Parador de El Saler for volunteering logistical support. The authors wish to acknowledge the use of the Maptool program for analysis and graphics in this paper. Maptool is a product of SEATURTLE.ORG (Information is available at www.seaturtle.org). Also, we acknowledge the use of the Douglas Argos Filter (DAF) utility in Movebank (www.movebank.org) and especially David Douglas for his help and recommendations. Finally, we thank the reviewers for their reviewing efforts.Abalo-Morla, S.; Marco, A.; Tomás, J.; Revuelta, O.; Abella, E.; Marco, V.; Crespo-Picazo, J.... (2018). Survival and dispersal routes of head-started loggerhead sea turtle (Caretta caretta) post-hatchlings in the Mediterranean Sea. Marine Biology. 165(3). https://doi.org/10.1007/s00227-018-3306-2S1653Abella P, Marco A, Martins S, Hawkes LA (2016) Is this what a climate change-resilient population of marine turtles looks like? Biol Conserv 193:124–132. https://doi.org/10.1016/j.biocon.2015.11.023Addison DS, Nelson KA (2000) Recapture of a tagged, captive reared juvenile loggerhead turtle—an example of habituation? Mar Turt Newsl 89:15–16Agostellini C, Lund U (2017) R package ‘circular’: Circular Statistics (version 0.4-93). https://r-forge.r-project.org/projects/circular/ . Accessed 05 July 2017Arendt MD, Schwenter JA, Boynton J, Segars AL, Byrd JI, David W, Parker L (2012) Temporal trends (2000–2011) and influences on fishery-independent catch rates for loggerhead sea turtles (Caretta caretta) at an important coastal foraging region in the southeastern United States. Fish Bull 110:470–483Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol Evol 23:20–25. https://doi.org/10.1016/j.tree.2007.10.003Baez J, Macias D, Antonio Caminas J, Ortiz de Urbina JM, Garcia-Barcelona S, Jesus Bellido J, Real R (2013) By-catch frequency and size differentiation in loggerhead turtles as a function of surface longline gear type in the western Mediterranean Sea. J Mar Biol Assoc UK 93:1423–1427. https://doi.org/10.1017/S0025315412001841Balbín R, Flexas MM, López-Jurado JL, Peña M, Amores A, Alemany F (2012) Vertical velocities and biological consequences at a front detected at the balearic sea. Cont Shelf Res 47:28–41. https://doi.org/10.1016/j.csr.2012.06.008Balbín R, López-Jurado JL, Flexas MM, Reglero P, Vélez-Velchí P, González-Pola C, Rodríguez JM, García A, Alemany F (2014) Interannual variability of the early summer circulation around the Balearic Islands: driving factors and potential effects on the marine ecosystem. J Mar Syst 138:70–81. https://doi.org/10.1016/j.jmarsys.2013.07.004Batschelet E (1981) Circular statistics in biology. Academic Press, LondonBell C, Parsons J (2002) Cayman turtle farm head-starting project yields tangible success. Mar Turt Newsl 98:5–6Bjorndal K, Bolten A, Martins H (2000) Somatic growth model of juvenile loggerhead sea turtles Caretta caretta: duration of pelagic stage. Mar Ecol Prog Ser 202:265–272. https://doi.org/10.3354/meps202265Bolten B (2003) Variation in sea turtle life history patterns: neritic vs. oceanic developmental stages. In: Lutz PL, Musick J, Wyneken J (eds) The biology of sea turtles. CRC Press, Boca Ratón, pp 243–257Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol Ecol 16:4886–4907. https://doi.org/10.1111/j.1365-294X.2007.03542.xBowen B, Avise JC, Richardson JI, Meylan AB, Margaritoulis D, Hopkins-Murphy SR (1993) Population Structure of loggerhead turtles (Caretta caretta) in the Northwestern Atlantic Ocean and Mediterranean Sea. Conserv Biol 7:834–844. https://doi.org/10.1046/j.1523-1739.1993.740834.xBriscoe D, Parker D, Balazs GH, Kurita M, Saito T, Okamoto H, Rice M, Polovina JJ, Crowder LB (2016) Active dispersal in loggerhead sea turtles (Caretta caretta) during the ‘lost years’. Proc R Soc B Biol Sci 283:1832. https://doi.org/10.1098/rspb.2016.0690Burke R (2015) Head-starting turtles: learning from experience. ‎Herpetol Conserv Biol 10(1):299–308Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New YorkCalenge C (2006) The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017Cardona L, Hays GC (2018) Ocean currents, individual movements and genetic structuring of populations. Mar Biol 165:10. https://doi.org/10.1007/s00227-017-3262-2Cardona L, Revelles M, Carreras C, San Félix M, Gazo M, Aguilar A (2005) Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar Biol 147:583–591. https://doi.org/10.1007/s00227-005-1578-9Cardona L, Revelles M, Parga ML, Tomás J, Aguilar A, Alegre F, Raga A, Ferrer X (2009) Habitat use by loggerhead sea turtles Caretta caretta off the coast of eastern Spain results in a high vulnerability to neritic fishing gear. Mar Biol 156:2621–2630. https://doi.org/10.1007/s00227-009-1288-9Cardona L, Fernández G, Revelles M, Aguilar A (2012) Readaptation to the wild of rehabilitated loggerhead sea turtles (Caretta caretta) assessed by satellite telemetry. Aquatic Conserv Mar Freshw Ecosyst 22:104–112. https://doi.org/10.1002/aqc.1242Carr A (1987) New perspectives on the pelagic stage of sea turtle development. Conserv Biol 1:103–121. https://doi.org/10.1111/j.1523-1739.1987.tb00020.xCarreras C, Cardona L, Aguilar A (2004) Incidental catch of the loggerhead turtle Caretta caretta off the Balearic Islands (western Mediterranean). Biol Conserv 117:321–329. https://doi.org/10.1016/j.biocon.2003.12.010Carreras C, Pascual M, Tomás J, Marco A, Hochscheid S, Bellido J, Gozalbes P, Parga M, Piovano S, Cardona L (2015) From accidental nesters to potential colonisers, the sequencial colonisation of the mediterranean by the loggerhead sea turtle (Caretta caretta). In: Kaska Y, Sonmez B, Turkecan O, Sezgin C. Book of abstracts of 35th Annual Symposium on Sea Turtle Biology and Conservation. MACART press, TurkeyCasale P (2011) Sea turtle by-catch in the Mediterranean. Fish Fish 12:299–316. https://doi.org/10.1111/j.1467-2979.2010.00394.xCasale P, Heppell S (2016) How much sea turtle bycatch is too much? A stationary age distribution model for simulating population abundance and potential biological removal in the Mediterranean. Endanger Species Res 29:239–254. https://doi.org/10.3354/esr00714Casale P, Margaritoulis D (2010) Sea turtles in the Mediterranean: distribution, threats and conservation priorities. IUCN, GlandCasale P, Mariani P (2014) The first ‘lost year’ of Mediterranean Sea turtles: dispersal patterns indicate subregional management units for conservation. Mar Ecol Prog Ser 498:263–274. https://doi.org/10.3354/meps10640Casale P, Tucker AD (2015) Caretta caretta. The IUCN Red List of Threatened Species 2015: e.T3897A83157651. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T3897A83157651.en . Accessed 29 March 2017Casale P, Mazaris AD, Freggi D, Basso R, Argano R (2007) Survival probabilities of loggerhead sea turtles (Caretta caretta) estimated from capture-mark-recapture data in the Mediterranean Sea. Sci Mar 71:365–372Casale P, Mazaris AD, Freggi D, Vallini C, Argano R (2009) Growth rates and age at adult size of loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea, estimated through capture-mark-recapture records. Sci Mar 73:589–595. https://doi.org/10.3989/scimar.2009.73n3589Casale P, Mazaris A, Freggi D (2011) Estimation of age at maturity of loggerhead sea turtles Caretta caretta in the Mediterranean using length-frequency data. Endanger Species Res 13:123–129. https://doi.org/10.3354/esr00319Casale P, Freggi D, Furii G, Vallini C, Salvemini P, Deflorio M, Totaro G, Raimondi S, Fortuna C, Godley BJ (2015) Annual survival probabilities of juvenile loggerhead sea turtles indicate high anthropogenic impact on Mediterranean populations. Aquatic Conserv Mar Freshw Ecosyst 25:551–561. https://doi.org/10.1002/aqc.2467Choquet R, Lebreton JD, Gimenez O, Reboulet AM, Pradel R (2009) U-CARE: Utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074. https://doi.org/10.1111/j.1600-0587.2009.05968.xChristiansen F, Putman NF, Farman R, Parker DM, Rice MR, Polovina JJ, Balazs GH, Hays GC (2016) Spatial variation in directional swimming enables juvenile sea turtles to reach and remain in productive waters. Mar Ecol Prog Ser 557:247–259. https://doi.org/10.3354/meps11874CLS (2016) Argos User’s Manual. http://www.argos-system.org/manual/3-location/34_location_classes.htm . Accessed 8 Sep 2016Clusa M, Carreras C, Pascual M, Demetropoulos A, Margaritoulis D, Rees AF, Hamza AA, Khalil M, Aureggi M, Levy Y, Türkozan O, Marco A, Aguilar A, Cardona L (2013) Mitochondrial DNA reveals Pleistocenic colonisation of the Mediterranean by loggerhead turtles (Caretta caretta). J Exp Mar Biol Ecol 439:15–24. https://doi.org/10.1016/j.jembe.2012.10.011Clusa M, Carreras C, Pascual M, Gaughran SJ, Piovano S, Giacoma C, Fernández G, Levy Y, Tomás J, Raga JA, Maffucci F, Hochscheid S, Aguilar A, Cardona L (2014) Fine-scale distribution of juvenile Atlantic and Mediterranean loggerhead turtles (Caretta caretta) in the Mediterranean Sea. Mar Biol 161:509–519. https://doi.org/10.1007/s00227-013-2353-yColes W, Musick JA (2000) Satellite sea surface temperature analysis and correlation with sea turtle distribution off North Carolina. Copeia 2000:551–554. https://doi.org/10.1643/0045-8511(2000)000[0551:SSSTAA]2.0.CO;2Conant TA, Dutton PH, Eguchi T Epperly SP, Fahy CC, Godfrey MH, MacPherson SL, Possardt EE, Schroeder BA, Seminoff JA, Snover ML, Upite CM, Witherington BE (2009) Loggerhead sea turtle (Caretta caretta) 2009 status review under the US Endangered Species Act. Report of the Loggerhead Biological Review Team to the National Marine Fisheries Service, August 2009. NOAA Institutional Repository. https://repository.library.noaa.gov/view/noaa/16204 . Accessed 1 January 2018Coyne M, Godley B (2005) Satellite tracking and analysis tool (STAT): an integrated system for archiving, analyzing and mapping animal tracking data. Mar Ecol Prog Ser 301:1–7Crespo-Picazo JL, García-Párraga D, Domènech F, Tomás J, Aznar FJ, Ortega J, Corpa JM (2017) Parasitic outbreak of the copepod Balaenophilus manatorum in neonate loggerhead sea turtles (Caretta caretta) from a head-starting program. BMC Vet Res 13:154. https://doi.org/10.1186/s12917-017-1074-8Cribb TH, Crespo-Picazo JL, Cutmore SC, Stacy BA, Chapman PA, García-Párraga D (2017) Elucidation of the first definitively identified life cycle for a marine turtle blood fluke (Trematoda: Spirorchiidae) enables informed control. Int J Parasitol 47:61–67. https://doi.org/10.1016/j.ijpara.2016.11.002Delaugerre M, Cesarini C (2004) Confirmed nesting of the loggerhead turtle in Corsica. Mar Turt Newsl 104:12Demetropoulos A (2003) Impact of tourism development on marine turtle nesting: strategies and actions to minimise impact. In: Margaritoulis D, Demetropoulos A (eds) Proceedings of the First Mediterranean Conference on Marine Turtles. Barcelona Convention—Bern Convention—Bonn Convention (CMS). Nicosia, p 27–36Domènech F, Badillo FJ, Tomás J, Raga JA, Aznar FJ (2015) Epibiont communities of loggerhead marine turtles (Caretta caretta) in the western Mediterranean: influence of geographic and ecological factors. J Mar Biol Assoc UK 95:851–861. https://doi.org/10.1017/S0025315414001520Domènech F, Tomás J, Crespo-Picazo JL, García-Párraga D, Raga JA, Aznar FJ (2017) To swim or not to swim: potential transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in marine turtles. PLoS One 12:e0170789. https://doi.org/10.1371/journal.pone.0170789Douglas DC, Weinzierl R, Davidson CS, Kays R, Wikelski M, Bohrer G (2012) Moderating Argos location errors in animal tracking data. Methods Ecol Evol 3:999–1007. https://doi.org/10.1111/j.2041-210X.2012.00245.xEchwikhi K, Jribi I, Bradai MN, Bouain A (2012) Overview of loggerhead turtles coastal nets interactions in the Mediterranean Sea. Aquatic Conserv Mar Freshw Ecosyst 22:827–835. https://doi.org/10.1002/aqc.2270Gaube P, Barceló C, McGillicuddy DJ, Domingo A, Miller P, Giffoni B, Marcovaldi N, Swimmer Y (2017) The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS One 12:e0172839. https://doi.org/10.1371/journal.pone.0172839Godley BJ, Broderick AC, Glen F, Hays GC (2003) Post-nesting movements and submergence patterns of loggerhead marine turtles in the Mediterranean assessed by satellite tracking. J Exp Mar Biol Ecol 287:119–134. https://doi.org/10.1016/S0022-0981(02)00547-6González C, Bruno I, Maxwell S, Álvarez K, Albareda D, Acha EM, Campagna C (2016) Habitat use, site fidelity and conservation opportunities for juvenile loggerhead sea turtles in the Río de la Plata, Argentina. Mar Biol 163:1–13. https://doi.org/10.1007/s00227-015-2795-5Gueguen L (2000) Segmentation by maximal predictive partitioning according to composition biases. In: Gascuel O, Sagot MF (eds) Computational biology. lecture notes in computer science, 2066th edn. Springer, Berlin, pp 32–44Hays GC (2000) The implications of variable remigration intervals for the assessment of population size in marine turtles. J Therm Biol 206:221–227. https://doi.org/10.1006/jtbi.2000.2116Hays GC, Marsh R (1997) Estimating the age of juvenile loggerhead sea turtles in the North Atlantic. Can J Zool 75:40–46. https://doi.org/10.1139/z97-005Hays GC, Akesson S, Godley BJ, Luschi P, Santidrian P (2001) The implications of location accuracy for the interpretation of satellite-tracking data. Anim Behav 61:1035–1040. https://doi.org/10.1006/anbe.2001.1685Hays GC, Fossette S, Katselidis KA, Mariani P, Schofield G (2010) Ontogenetic development of migration: lagrangian drift trajectories suggest a new paradigm for sea turtles. J R Soc Interface 7:1319–1327. https://doi.org/10.1098/rsif.2010.0009Hays GC, Ferreira LC, Sequeira AMM, Meekan MG, Duarte CM, Bailey H, Bailleul F, Bowen WD, Caley MJ, Costa DP, Eguíluz VM, Fossette S, Friedlaender AS, Gales N, Gleiss AC, Gunn J, Harcourt R, Hazen EL, Heithaus MR, Heupel M, Holland K, Horning M, Jonsen I, Kooyman GL, Lowe CG, Madsen PT, Marsh H, Phillips RA, Righton D, Ropert-Coudert Y, Sato K, Shaffer SA, Simpfendorfer CA, Sims DW, Skomal G, Takahashi A, Trathan PN, Wikelski M, Womble JN, Thums M (2016) Key questions in marine megafauna movement ecology. Trends Ecol Evol 31:463–475. https://doi.org/10.1016/j.tree.2016.02.015Hazen EL, Maxwell SM, Bailey H, Bograd SJ, Hamann M, Gaspar P, Godley BJ, Shillinger GL (2012) Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar Ecol Prog Ser 457:221–240. https://doi.org/10.3354/meps09857Heppell SS (1998) Application of life-history theory and population model analysis to turtle conservation. Copeia 1998:367–375. https://doi.org/10.2307/1447430Heppell SS, Crowder LB, Crouse DT (1996) Models to evaluate headstarting as a management tool for long-lived turtles. Ecol Appl 6:556–565. https://doi.org/10.2307/2269391Hines JE, Sauer JR (1989) Program CONTRAST–A general program for the analysis of several survival or recovery rate estimates. Fish and Wildlife Technical Report, 24Kobayashi DR, Farman R, Polovina JJ, Parker DM, Rice M, Balazs GH (2014) “Going with the Flow” or not: evidence of positive rheotaxis in oceanic juvenile loggerhead turtles (Caretta caretta) in the South Pacific Ocean using satellite tags and ocean circulation data. PLoS One 9:e103701. https://doi.org/10.1371/journal.pone.0103701Kornaraki E, Matossian DA, Mazaris AD, Matsinos YG, Margaritoulis D (2006) Effectiveness of different conservation measures for loggerhead sea turtle (Caretta caretta) nests at Zakynthos Island, Greece. Biol Conserv 130:324–330. https://doi.org/10.1016/j.biocon.2005.12.027Lamont MM, Putman NF, Fujisaki I, Hart KM (2015) Spatial requirements of different life-stages of the loggerhead turtle (Caretta caretta) from a distinct population segment in the northern Gulf of Mexico. Herpetol Conserv Biol 10:2643Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118. https://doi.org/10.2307/2937171Lohmann KJ, Putman NF, Lohmann CM (2012) The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol 22:336–342. https://doi.org/10.1016/j.conb.2011.11.005Luschi P, Casale P (2014) Movement patterns of marine turtles in the Mediterranean Sea: a review. Ital J Zool 81:478–495. https://doi.org/10.1080/11250003.2014.963714Maffucci F, Corrado R, Palatella L, Borra M, Marullo S, Hochscheid S, Lacorata G, Iudicone D (2016) Seasonal heterogeneity of ocean warming: a mortality sink for ectotherm colonizers. Sci Rep 6:23983. https://doi.org/10.1038/srep23983MAGRAMA (2012) Estrategia Marina. Demarcación Marina Levantino-Balear, Parte I: Marco general, Evaluación inicial y buen estado ambiental. Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.mapama.gob.es/es/costas/temas/proteccion-medio-marino/I_Marco_General_Levantino-Balear_tcm7-204338.pdf . Accessed 29 March 2017Mansfield KL, Wyneken J, Rittschof D, Walsh M, Lim CW, Richards PM et al (2012) Satellite tag attachment methods for tracking neonate sea turtles. Mar Ecol Prog Ser 457:181–192. https://doi.org/10.3354/meps09485Mansfield KL, Wyneken J, Porter WP, Luo J (2014) First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2013.3039Mansfield KL, Mendilaharsu ML, Putman NF, dei Marcovaldi MAG, Sacco AE, Lopez G, Pires T, Swimmer Y (2017) First satellite tracks of South Atlantic sea turtle ‘lost years’: seasonal variation in trans-equatorial movement. Proc R Soc B 284:20171730. https://doi.org/10.1098/rspb.2017.1730Margaritoulis D, Argano R, Baran I, Bentivegna F, Bradai MN, Camiñas JA, Casale P (2003) Loggerhead turtles in the Mediterranean Sea: present knowledge and conservation perspectives. In: Bolten AB (ed) Loggerhead Sea Turtle, B.E. Witherington. Smithsonian Institution

    Over-expression of adenosine deaminase in mouse podocytes does not reverse puromycin aminonucleoside resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Edema in nephrotic syndrome results from renal retention of sodium and alteration of the permeability properties of capillaries. Nephrotic syndrome induced by puromycin aminonucleoside (PAN) in rats reproduces the biological and clinical signs of the human disease, and has been widely used to identify the cellular mechanisms of sodium retention. Unfortunately, mice do not develop nephrotic syndrome in response to PAN, and we still lack a good mouse model of the disease in which the genetic tools necessary for further characterizing the pathophysiological pathway could be used. Mouse resistance to PAN has been attributed to a defect in glomerular adenosine deaminase (ADA), which metabolizes PAN. We therefore attempted to develop a mouse line sensitive to PAN through induction of normal adenosine metabolism in their podocytes.</p> <p>Methods</p> <p>A mouse line expressing functional ADA under the control of the podocyte-specific podocin promoter was generated by transgenesis. The effect of PAN on urinary excretion of sodium and proteins was compared in rats and in mice over-expressing ADA and in littermates.</p> <p>Results</p> <p>We confirmed that expression of ADA mRNAs was much lower in wild type mouse than in rat glomerulus. Transgenic mice expressed ADA specifically in the glomerulus, and their ADA activity was of the same order of magnitude as in rats. Nonetheless, ADA transgenic mice remained insensitive to PAN treatment in terms of both proteinuria and sodium retention.</p> <p>Conclusions</p> <p>Along with previous results, this study shows that adenosine deaminase is necessary but not sufficient to confer PAN sensitivity to podocytes. ADA transgenic mice could be used as a background strain for further transgenesis.</p

    Marine spatial planning and Good Environmental status: A perspective on spatial and temporal dimensions

    Get PDF
    The European Union Marine Strategy Framework Directive requires the Good Environmental Status of marine environments in Europe's regional seas; yet, maritime activities, including sources of marine degradation, are diversifying and intensifying in an increasingly globalized world. Marine spatial planning is emerging as a tool for rationalizing competing uses of the marine environment while guarding its quality. A directive guiding the development of such plans by European Union member states is currently being formulated. There is an undeniable need for marine spatial planning. However, we argue that considerable care must be taken with marine spatial planning, as the spatial and temporal scales of maritime activities and of Good Environmental Status may be mismatched. We identify four principles for careful and explicit consideration to align the requirements of the two directives and enable marine spatial planning to support the achievement of Good Environmental Status in Europe's regional seas

    Contribución de la Paleofitogeografía a la interpretación del paisaje vegetal ibérico: estado de conocimientos y nuevas perspectivas de investigación

    Get PDF
    The palaeobotanical studies that have been accomplished in the Iberian Peninsula during the last two decades have provided a great amount of data that can be applied in geobotanical knowledge. In most of the cases, those results have contributed to solve classical scientific debates regarding vegetal landscapes interpretations. One of the most relevant discussions is related to the aloctonous or non-aloctonous origin of much of the Iberian pine forests, on diverse Iberian habitats. The main contributions of Palaeobotany to the processes that explain the present distribution of plants are reviewed in a spatial and temporal framework, from old geological periods (Mesozoic, Tertiary) to the recent ones (Pleistocene, Holocene). Linked to the history of our vegetal landscapes, Pleistocene and Holocene epochs have been treated from two different points of view: firstly the problems within extensive territorial environments and, secondly, the problems related to the interpretation of the evolution and/or behaviour of taxa. In the last part, some new investigation trends related to palaeophytogeography are exposed, focusing on the high potential interest on being applied to Iberian ecosystems.Los trabajos de car&aacute;cter paleobot&aacute;nico realizados en la pen&iacute;nsula Ib&eacute;rica en las dos &uacute;ltimas d&eacute;cadas han proporcionado un importante volumen de resultados con aplicaci&oacute;n en el &aacute;mbito del conocimiento geobot&aacute;nico. En muchos casos, esos resultados han aportado soluciones a debates cl&aacute;sicos relativos a la interpretaci&oacute;n del paisaje vegetal. Uno de los m&aacute;s conocidos es el de la consideraci&oacute;n, como espont&aacute;neos o no, de muchos de los pinares ib&eacute;ricos en diferentes &aacute;mbitos del territorio peninsular. Se revisan las contribuciones m&aacute;s importantes de la Paleobot&aacute;nica a los procesos que explican la actual distribuci&oacute;n de las plantas, en un marco tanto espacial como temporal, desde periodos geol&oacute;gicos antiguos (Mesozoico, Terciario) a los m&aacute;s recientes (Pleistoceno, Holoceno). Dentro de estos &uacute;ltimos nos hemos referido, por una parte, a problemas planteados en &aacute;mbitos territoriales extensos y, por otra, a problemas vinculados a la interpretaci&oacute;n de la evoluci&oacute;n y/o comportamiento de taxones concretos. Por &uacute;ltimo se hace referencia a las tendencias recientes y nuevas metodolog&iacute;as de aplicaci&oacute;n en paleofitogeograf&iacute;a, aludiendo a los primeros resultados que hayan podido proporcionar en el marco peninsular

    Survival and long-term maintenance of tertiary trees in the Iberian Peninsula during the Pleistocene. First record of Aesculus L.

    Get PDF
    The Italian and Balkan peninsulas have been places traditionally highlighted as Pleistocene glacial refuges. The Iberian Peninsula, however, has been a focus of controversy between geobotanists and palaeobotanists as a result of its exclusion from this category on different occasions. In the current paper, we synthesise geological, molecular, palaeobotanical and geobotanical data that show the importance of the Iberian Peninsula in the Western Mediterranean as a refugium area. The presence of Aesculus aff. hippocastanum L. at the Iberian site at Cal Guardiola (Tarrasa, Barcelona, NE Spain) in the Lower– Middle Pleistocene transition helps to consolidate the remarkable role of the Iberian Peninsula in the survival of tertiary species during the Pleistocene. The palaeodistribution of the genus in Europe highlights a model of area abandonment for a widely-distributed species in the Miocene and Pliocene, leading to a diminished and fragmentary presence in the Pleistocene and Holocene on the southern Mediterranean peninsulas. Aesculus fossils are not uncommon within the series of Tertiary taxa. Many appear in the Pliocene and suffer a radical impoverishment in the Lower–Middle Pleistocene transition. Nonetheless some of these tertiary taxa persisted throughout the Pleistocene and Holocene up to the present in the Iberian Peninsula. Locating these refuge areas on the Peninsula is not an easy task, although areas characterised by a sustained level of humidity must have played an predominant role
    corecore