152 research outputs found

    Cu codoping control over magnetic precipitate formation in ZnCoO nanowires

    Full text link
    Using electrodeposition, we have grown nanowires of ZnCoO with Cu codoping concentrations varying from 4-10 at.%, controlled only by the deposition potential. We demonstrate control over magnetic Co oxide nano-precipitate formation in the nanowires via the Cu concentration. The different magnetic behavior of the Co oxide nano-precipitates indicates the potential of ZnCoO for magnetic sensor applications.Comment: 5 pages, 5 figure

    Direct Observation of Propagating Gigahertz Coherent Guided Acoustic Phonons in Free Standing Single Copper Nanowires

    Full text link
    We report on gigahertz acoustic phonon waveguiding in free-standing single copper nanowires studied by femtosecond transient reflectivity measurements. The results are discussed on the basis of the semianalytical resolution of the Pochhammer and Chree equation. The spreading of the generated Gaussian wave packet of two different modes is derived analytically and compared with the observed oscillations of the sample reflectivity. These experiments provide a unique way to independently obtain geometrical and material characterization. This direct observation of coherent guided acoustic phonons in a single nano-object is also the first step toward nanolateral size acoustic transducer and comprehensive studies of the thermal properties of nanowires

    Effect of Crystallographic Texture on Magnetic Characteristics of Cobalt Nanowires

    Get PDF
    Cobalt nanowires with controlled diameters have been synthesized using electrochemical deposition in etched ion-track polycarbonate membranes. Structural characterization of these nanowires with diameter 70, 90, 120 nm and length 30 μm was performed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. The as-prepared wires show uniform diameter along the whole length and X-ray diffraction analysis reveals that [002] texture of these wires become more pronounced as diameter is reduced. Magnetic characterization of the nanowires shows a clear difference of squareness and coercivity between parallel and perpendicular orientations of the wires with respect to the applied field direction. In case of parallel applied field, the coercivity has been found to be decreasing with increasing diameter of the wires while in perpendicular case; the coercivity observes lower values for larger diameter. The results are explained by taking into account the magnetocrystalline and shape anisotropies with respect to the applied field and domain transformation mechanism when single domain limit is surpassed

    Molecular dynamics simulations of non-equilibrium systems

    Get PDF
    Peer reviewe
    corecore