6 research outputs found

    Finding New Genes for Non-Syndromic Hearing Loss through an In Silico Prioritization Study

    Get PDF
    At present, 51 genes are already known to be responsible for Non-Syndromic hereditary Hearing Loss (NSHL), but the knowledge of 121 NSHL-linked chromosomal regions brings to the hypothesis that a number of disease genes have still to be uncovered. To help scientists to find new NSHL genes, we built a gene-scoring system, integrating Gene Ontology, NCBI Gene and Map Viewer databases, which prioritizes the candidate genes according to their probability to cause NSHL. We defined a set of candidates and measured their functional similarity with respect to the disease gene set, computing a score () that relies on the assumption that functionally related genes might contribute to the same (disease) phenotype. A Kolmogorov-Smirnov test, comparing the pair-wise distribution on the disease gene set with the distribution on the remaining human genes, provided a statistical assessment of this assumption. We found at a p-value that the former pair-wise is greater than the latter, justifying a prioritization strategy based on the functional similarity of candidate genes respect to the disease gene set. A cross-validation test measured to what extent the ranking for NSHL is different from a random ordering: adding 15% of the disease genes to the candidate gene set, the ranking of the disease genes in the first eight positions resulted statistically different from a hypergeometric distribution with a p-value and a power. The twenty top-scored genes were finally examined to evaluate their possible involvement in NSHL. We found that half of them are known to be expressed in human inner ear or cochlea and are mainly involved in remodeling and organization of actin formation and maintenance of the cilia and the endocochlear potential. These findings strongly indicate that our metric was able to suggest excellent NSHL candidates to be screened in patients and controls for causative mutations

    A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression

    No full text
    Mutations in the potassium channel gene KCNQ4 underlie DFNA2, a subtype of autosomal dominant progressive, high-frequency hearing loss. Based on a phenotype-guided mutational screening we have identified a novel mutation c.886G>A, leading to the p.G296S substitution in the pore region of KCNQ4 channel. The possible impact of this mutation on total KCNQ4 protein expression, relative surface expression and channel function was investigated. When the G296S mutant was expressed in Xenopus oocytes, electrophysiological recordings did not show voltage-activated K+ currents. The p.G296S mutation impaired KCNQ4 channel activity in two manners. It greatly reduced surface expression and, secondarily, abolished channel function. The deficient expression at the cell surface membrane was further confirmed in non-permeabilized NIH-3T3 cells transfected with the mutant KCNQ4 tagged with the hemagglutinin epitope in the extracellular S1-S2 linker. Co-expression of mutant and wild type KCNQ4 in oocytes was performed to mimic the heterozygous condition of the p.G296S mutation in the patients. The results showed that the G296S mutant exerts a strong dominant-negative effect on potassium currents by reducing the wild type KCNQ4 channel expression at the cell surface. This is the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2. © Springer-Verlag 2007.Peer Reviewe

    Differential Biological Role of CD3 Chains Revealed by Human Immunodeficiencies

    No full text
    The biological role in vivo of the homologous CD3γ and δ invariant chains within the human TCR/CD3 complex is a matter of debate, as murine models do not recapitulate human immunodeficiencies. We have characterized, in a Turkish family, two new patients with complete CD3γ deficiency and SCID symptoms and compared them with three CD3γ-deficient individuals belonging to two families from Turkey and Spain. All tested patients shared similar immunological features such as a partial TCR/CD3 expression defect, mild αβ and γδ T lymphocytopenia, poor in vitro proliferative responses to Ags and mitogens at diagnosis, and very low TCR rearrangement excision circles and CD45RA+ αβ T cells. However, intrafamilial and interfamilial clinical variability was observed in patients carrying the same CD3G mutations. Two reached the second or third decade in healthy conditions, whereas the other three showed lethal SCID features with enteropathy early in life. In contrast, all reported human complete CD3δ (or CD3ε) deficiencies are in infants with life-threatening SCID and very severe αβ and γδ T lymphocytopenia. Thus, the peripheral T lymphocyte pool was comparatively well preserved in human CD3γ deficiencies despite poor thymus output or clinical outcome. We propose a CD3δ ≫ CD3γ hierarchy for the relative impact of their absence on the signaling for T cell production in humans.Ministerio de Educación y CienciaMinisterio de Ciencia y TecnologíaComunidad Autónoma de MadridMutua MadrileñaDepto. de Inmunología, Oftalmología y ORLFac. de MedicinaTRUEpu

    Characterization of a spontaneous, recessive, missense mutation arising in the Tecta gene

    No full text
    The TECTA gene encodes alpha-tectorin ( TECTA), a major noncollagenous component of the tectorial membrane (TM). In humans, mutations in TECTA lead to either dominant (DFNA8/A12) or recessive (DFNB21) forms of nonsyndromic hearing loss. All missense mutations in TECTA that have been reported thus far are associated with the dominant subtype, whereas those leading to recessive deafness are all inactivating mutations. In this paper, we characterize a spontaneous missense mutation (c.1046C9 > A, p.A349D) arising in the mouse Tecta gene that is, unlike all previously reported missense mutations in TECTA, recessive. The morphological phenotype of the Tecta(A349D/A349D) mouse resembles but is not identical to that previously described for the Tecta(Delta ENT/Delta ENT) mouse. As in the Tecta(Delta ENT/Delta ENT) mouse, the TM is completely detached from the surface of the organ of Corti and spiral limbus, lacks a striated-sheet matrix, and is deficient in both beta-tectorin (Tectb) and otogelin. A significant amount of Tecta is, however, detected in the TM of the Tecta(A349D/A349D) mouse, and numerous, electron-dense matrix granules are seen interspersed among the disorganized collagen fibrils. Mutated Tecta(A349D) is therefore incorporated into the TM but presumably unable to interact with either Tectb or otogelin. The Tecta(A349D/A349D) mouse reveals that missense mutations in Tecta can be recessive and lead to TM detachment and suggests that should similar mutations arise in the human population, they would likely cause deafness
    corecore