392 research outputs found

    Immunomodulatory Effect of Toll-Like Receptor-3 Ligand Poly I:C on Cortical Spreading Depression

    Get PDF
    The release of inflammatory mediators following cortical spreading depression (CSD) is suggested to play a role in pathophysiology of CSD-related neurological disorders. Toll-like receptors (TLR) are master regulators of innate immune function and involved in the activation of inflammatory responses in the brain. TLR3 agonist poly I:C exerts anti-inflammatory effect and prevents cell injury in the brain. The aim of the present study was to examine the effect of systemic administration of poly I:C on the release of cytokines (TNF-α, IFN-γ, IL-4, TGF-β1, and GM-CSF) in the brain and spleen, splenic lymphocyte proliferation, expression of GAD65, GABAAα, GABAAβ as well as Hsp70, and production of dark neurons after induction of repetitive CSD in juvenile rats. Poly I:C significantly attenuated CSD-induced production of TNF-α and IFN-γ in the brain as well as TNF-α and IL-4 in the spleen. Poly I:C did not affect enhancement of splenic lymphocyte proliferation after CSD. Administration of poly I:C increased expression of GABAAα, GABAAβ as well as Hsp70 and decreased expression of GAD65 in the entorhinal cortex compared to CSD-treated tissues. In addition, poly I:C significantly prevented production of CSD-induced dark neurons. The data indicate neuroprotective and anti-inflammatory effects of TLR3 activation on CSD-induced neuroinflammation. Targeting TLR3 may provide a novel strategy for developing new treatments for CSD-related neurological disorders. © 2014, Springer Science+Business Media New York

    Immunomodulatory Effect of Toll-Like Receptor-3 Ligand Poly I:C on Cortical Spreading Depression

    Get PDF
    The release of inflammatory mediators following cortical spreading depression (CSD) is suggested to play a role in pathophysiology of CSD-related neurological disorders. Toll-like receptors (TLR) are master regulators of innate immune function and involved in the activation of inflammatory responses in the brain. TLR3 agonist poly I:C exerts anti-inflammatory effect and prevents cell injury in the brain. The aim of the present study was to examine the effect of systemic administration of poly I:C on the release of cytokines (TNF-α, IFN-γ, IL-4, TGF-β1, and GM-CSF) in the brain and spleen, splenic lymphocyte proliferation, expression of GAD65, GABAAα, GABAAβ as well as Hsp70, and production of dark neurons after induction of repetitive CSD in juvenile rats. Poly I:C significantly attenuated CSD-induced production of TNF-α and IFN-γ in the brain as well as TNF-α and IL-4 in the spleen. Poly I:C did not affect enhancement of splenic lymphocyte proliferation after CSD. Administration of poly I:C increased expression of GABAAα, GABAAβ as well as Hsp70 and decreased expression of GAD65 in the entorhinal cortex compared to CSD-treated tissues. In addition, poly I:C significantly prevented production of CSD-induced dark neurons. The data indicate neuroprotective and anti-inflammatory effects of TLR3 activation on CSD-induced neuroinflammation. Targeting TLR3 may provide a novel strategy for developing new treatments for CSD-related neurological disorders. © 2014, Springer Science+Business Media New York

    Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help?

    Get PDF
    Inflammatory demyelination characterizes the initial stages of multiple sclerosis, while progressive axonal and neuronal loss are coexisting and significantly contribute to the long-term physical and cognitive impairment. There is an unmet need for a conceptual shift from a dualistic view of multiple sclerosis pathology, involving either inflammatory demyelination or neurodegeneration, to integrative dynamic models of brain reorganization, where, glia-neuron interactions, synaptic alterations and grey matter pathology are longitudinally envisaged at the whole-brain level. Functional and structural MRI can delineate network hallmarks for relapses, remissions or disease progression, which can be linked to the pathophysiology behind inflammatory attacks, repair and neurodegeneration. Here, we aim to unify recent findings of grey matter circuits dynamics in multiple sclerosis within the framework of molecular and pathophysiological hallmarks combined with disease-related network reorganization, while highlighting advances from animal models (in vivo and ex vivo) and human clinical data (imaging and histological). We propose that MRI-based brain networks characterization is essential for better delineating ongoing pathology and elaboration of particular mechanisms that may serve for accurate modelling and prediction of disease courses throughout disease stages

    Cytotoxic CD8+ T cell-neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death

    Get PDF
    Cytotoxic CD8(+) T cells are considered important effector cells contributing to neuronal damage in inflammatory and degenerative CNS disorders. Using time-lapse video microscopy and two-photon imaging in combination with whole-cell patch-clamp recordings, we here show that major histocompatibility class I (MHC I)-restricted neuronal antigen presentation and T cell receptor specificity determine CD8(+) T-cell locomotion and neuronal damage in culture and hippocampal brain slices. Two separate functional consequences result from a direct cell-cell contact between antigen-presenting neurons and antigen-specific CD8(+) T cells. (1) An immediate impairment of electrical signaling in single neurons and neuronal networks occurs as a result of massive shunting of the membrane capacitance after insertion of channel-forming perforin (and probably activation of other transmembrane conductances), which is paralleled by an increase of intracellular Ca(2+) levels (within <10 min). (2) Antigen-dependent neuronal apoptosis may occur independently of perforin and members of the granzyme B cluster (within approximately 1 h), suggesting that extracellular effects can substitute for intracellular delivery of granzymes by perforin. Thus, electrical silencing is an immediate consequence of MHC I-restricted interaction of CD8(+) T cells with neurons. This mechanism is clearly perforin-dependent and precedes, but is not causally linked, to neuronal cell death

    Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter

    Full text link
    Background: Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky’ immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes. Methods: Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay. Expression regulation of molecules involved in vesicular glutamate release was examined by quantitative real-time PCR, and mechanisms of non-vesicular glutamate release were studied by pharmacological blocking experiments. The impact of CD8+ T cell-mediated glutamate liberation on neuronal viability was studied in acute brain slice preparations. Results: Following T cell receptor stimulation, CD8+ T cells acquire the molecular repertoire for vesicular glutamate release: (i) they upregulate expression of glutaminase required to generate glutamate via deamination of glutamine and (ii) they upregulate expression of vesicular proton-ATPase and vesicular glutamate transporters required for filling of vesicles with glutamate. Subsequently, CD8+ T cells release glutamate in a strictly stimulus-dependent manner. Upon repetitive T cell receptor stimulation, CD25high CD8+ T effector cells exhibit higher estimated single cell glutamate release rates than CD25low CD8+ T memory cells. Moreover, glutamate liberation by oligodendrocyte-reactive CD25high CD8+ T effector cells is capable of eliciting collateral excitotoxic cell death of neurons (despite glutamate re-uptake by glia cells and neurons) in intact CNS gray matter. Conclusion: Glutamate release may represent a crucial effector pathway of neural-antigen reactive CD8+ T cells, contributing to excitotoxicity in CNS inflammation.<br

    Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration

    Get PDF
    Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy

    On embodied memetic evolution and the emergence of behavioural traditions in Robots

    Get PDF
    This paper describes ideas and initial experiments in embodied imitation using e-puck robots, developed as part of a project whose aim is to demonstrate the emergence of artificial culture in collective robot systems. Imitated behaviours (memes) will undergo variation because of the noise and heterogeneities of the robots and their sensors. Robots can select which memes to enact, and-because we have a multi-robot collective-memes are able to undergo multiple cycles of imitation, with inherited characteristics. We thus have the three evolutionary operators: variation, selection and inheritance, and-as we describe in this paper-experimental trials show that we are able to demonstrate embodied movement-meme evolution. © 2011 Springer-Verlag

    CD4+ CD25+ FoxP3+ regulatory T cells suppress cytotoxicity of CD8+ effector T cells: implications for their capacity to limit inflammatory central nervous system damage at the parenchymal level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD4<sup>+ </sup>CD25<sup>+ </sup>forkhead box P3 (FoxP3)<sup>+ </sup>regulatory T cells (T reg cells) are known to suppress adaptive immune responses, key control tolerance and autoimmunity.</p> <p>Methods</p> <p>We challenged the role of CD4<sup>+ </sup>T reg cells in suppressing established CD8<sup>+ </sup>T effector cell responses by using the OT-I/II system <it>in vitro </it>and an OT-I-mediated, oligodendrocyte directed <it>ex vivo </it>model (ODC-OVA model).</p> <p>Results</p> <p>CD4<sup>+ </sup>T reg cells dampened cytotoxicity of an ongoing CD8<sup>+ </sup>T effector cell attack <it>in vitro </it>and within intact central nervous system tissue <it>ex vivo</it>. However, their suppressive effect was limited by the strength of the antigen signal delivered to the CD8<sup>+ </sup>T effector cells and the ratio of regulatory to effector T cells. CD8<sup>+ </sup>T effector cell suppression required T cell receptor-mediated activation together with costimulation of CD4<sup>+ </sup>T reg cells, but following activation, suppression did not require restimulation and was antigen non-specific.</p> <p>Conclusions</p> <p>Our results suggest that CD4<sup>+ </sup>T reg cells are capable of suppressing CD8<sup>+ </sup>T effector cell responses at the parenchymal site, that is, limiting parenchymal damage in autoimmune central nervous system inflammation.</p

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis

    Pseudocholinesterase as a biomarker for untreated Wilson's disease

    Get PDF
    The aim of this study was to demonstrate that pseudocholinesterase (CHE) serum level is a useful diagnostic biomarker for untreated Wilson's disease (WD). Between 2013 and 2019, about 75 patients were referred to the outpatient department of the University of Düsseldorf with suspected Wilson's disease. In 31 patients with suspected Wilson's disease (WD-SUS-group), WD was excluded by means of investigations other than analysis of blood and urine. A total of 27 parameters of blood and urine in these 31 patients were compared to those of 20 de novo patients with manifest WD (WD-DEF-group), which parameter showed the highest significance level of difference between the WD-DEF-group and the WD-SUS-group. Thereafter, receiver operating characteristics (ROC-curves) were analyzed to evaluate which parameter showed the largest area under the curve (AUC) to detect WD. Finally, a logistic regression analysis was performed to analyze which combination of parameters allowed the best classification of the 51 patients either into the WD-DEF-group or into the WD-SUS-group. CHE showed the highest significance level for a difference between the WD-DEF- and WD-SUS-group, had the highest AUC, and, in combination with ceruloplasmin, allowed 100% correct classification. Without CHE, no other combination of parameters reached this level of correct classification. After the initiation of treatment, which regularly results in an improvement in CHE, the high diagnostic accuracy of this biomarker was lost. Cholinesterase turns out to be an excellent biomarker for differentiation between untreated de novo patients with manifest WD and heterozygotic gene carriers
    • …
    corecore