466 research outputs found

    The effects of dietary lipid and fibre levels on digestibility of diet and on the growth performance of sharpsnout seabream (Diplodus puntazzo)

    Get PDF
    In the present study, sharpsnout seabream (Diplodus puntazzo) were fed three experimental isonitrogenous diets composed of 45 g 100g-1 protein and varying lipid and fibre contents as follows: diet A: 45/10/1.5, B: 45/15/1.5 and C: 45/15/5. The effects of the diet composition were investigated by measuring digestibility, growth, carcass composition and haematological parameters. The apparent digestibility coefficients (ADCs) for proteins, fats and carbohydrates, measured at high (26˚C) and low (16˚C) water temperatures in laboratory conditions, were not affected by the diet or temperature treatments. Growth was evaluated in a seven-month trial using animals held in sea cages. The specific growth rate (SGR) showed no significant differences among the treatments while the feed conversion ratio (FCR) was significantly improved in the fish that were fed a low-fat diet. A significant increase in body fat was detected in the fish that were fed high-fat diets. The blood serum total lipid levels were elevated for the fish that were fed diet C. In conclusion, a diet containing a protein/fat/fibre ratio of 45/10/1.5 g 100g-1 can result in satisfactory growth and an improved FCR value when compared with diets with higher fat and/or fibre levels, demonstrating that the required fat level for sharpsnout seabream is lower than 15 g 100g-1

    Identification of stable normalization genes for quantitative real-time PCR in porcine articular cartilage

    Get PDF
    BackgroundExpression levels for genes of interest must be normalized with an appropriate reference, or housekeeping gene, to make accurate comparisons of quantitative real-time PCR results. The purpose of this study was to identify the most stable housekeeping genes in porcine articular cartilage subjected to a mechanical injury from a panel of 10 candidate genes.ResultsTen candidate housekeeping genes were evaluated in three different treatment groups of mechanically impacted porcine articular cartilage. The genes evaluated were: beta actin, beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, hydroxymethylbilane synthase, hypoxanthine phosphoribosyl transferase, peptidylprolyl isomerase A (cyclophilin A), ribosomal protein L4, succinate dehydrogenase flavoprotein subunit A, TATA box binding protein, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein—zeta polypeptide. The stability of the genes was measured using geNorm, BestKeeper, and NormFinder software. The four most stable genes measured via geNorm were (most to least stable) succinate dehydrogenase flavoprotein, subunit A, peptidylprolyl isomerase A, glyceraldehyde-3-phosphate dehydrogenase, beta actin; the four most stable genes measured via BestKeeper were glyceraldehyde-3-phosphate dehydrogenase, peptidylprolyl isomerase A, beta actin, succinate dehydrogenase flavoprotein, subunit A; and the four most stable genes measured via NormFinder were peptidylprolyl isomerase A, succinate dehydrogenase flavoprotein, subunit A, glyceraldehyde-3-phosphate dehydrogenase, beta actin.ConclusionsBestKeeper, geNorm, and NormFinder all generated similar results for the most stable genes in porcine articular cartilage. The use of these appropriate reference genes will facilitate accurate gene expression studies of porcine articular cartilage and suggest appropriate housekeeping genes for articular cartilage studies in other species

    A randomized controlled trial of the effects of a prudent diet on cardiovascular risk factors, gene expression, and DNA methylation - the Diet and Genetic Intervention (DIGEST) Pilot study

    Get PDF
    Background Risk of cardiovascular disease (CVD) can be increased by single-nucleotide polymorphisms (SNPs) in the 9p21 region of the genome. However, observational studies have shown that the deleterious effect of 9p21 SNPs on CVD might be offset by consuming a diet rich in fresh fruits and vegetables. This association may be driven by diet-influenced modifications in epigenetic and gene expression profiles. In this pilot study, we aimed to: i. test the feasibility of provision of a ‘Prudent’ and ‘Western’ diet outside of a specialized clinic, ii. assess the impact of each diet on cardiovascular risk factors. Methods A single centre, parallel two-arm, pilot randomized controlled trial (RCT) with food provision was conducted in a university teaching hospital outpatient clinic (McMaster university, Hamilton, ON, Canada). The aim was to recruit 80 participants, which allowed for a 10 % dropout. The actual study consisted of 84 apparently healthy participants (69 % women, 18 to 77 years) at low cardiovascular risk. Participants were randomly assigned to follow one of two weight-maintaining diets: ‘Prudent’ or ‘Western’ for 2-weeks. The Prudent diet provided 92 % of provided food consumed). The Prudent diet was 48 % more palatable than the Western diet (P < 0.05). Participants receiving the Prudent diet showed a trend toward reduced systolic (-4 mmHg; P = 0.10) and diastolic (-3 mmHg; P = 0.07) blood pressure, and total cholesterol (-0.24 mmol/L; P = 0.08), compared to individuals receiving the Western diet. Data collection from all randomized participants was completed within 18 months. Conclusions Recruitment, and retention of apparently healthy, normotensive adults into a feeding study for a 2-week duration is feasible outside of specialized dietary clinic, and modest diet-related changes in biomarkers begin to appear after two weeks

    Tenebrio molitor larvae meal inclusion affects hepatic proteome and apoptosis and/or autophagy of three farmed fish species

    Get PDF
    Herein, the effect of dietary inclusion of insect (Tenebrio molitor) meal on hepatic pathways of apoptosis and autophagy in three farmed fish species, gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss), fed diets at 25%, 50% and 60% insect meal inclusion levels respectively, was investigated. Hepatic proteome was examined by liver protein profiles from the three fish species, obtained by two-dimensional gel electrophoresis. Although cellular stress was evident in the three teleost species following insect meal, inclusion by T. molitor, D. labrax and O. mykiss suppressed apoptosis through induction of hepatic autophagy, while in S. aurata both cellular procedures were activated. Protein abundance showed that a total of 30, 81 and 74 spots were altered significantly in seabream, European seabass and rainbow trout, respectively. Insect meal inclusion resulted in individual protein abundance changes, with less number of proteins altered in gilthead seabream compared to European seabass and rainbow trout. This is the first study demonstrating that insect meal in fish diets is causing changes in liver protein abundances. However, a species-specific response both in the above mentioned bioindicators, indicates the need to strategically manage fish meal replacement in fish diets per species

    The effect of organic and conventional production methods on sea bream growth, health and body composition: A field experiment

    Get PDF
    This study aimed to develop a better understanding of organic sea bream aquaculture production in Greece, in particular its consequences for fish growth, health and body composition, and to propose and update standards for sustainable organic sea bream farming. Gilthead sea bream were kept in sea cages at densities of 4 kg m–3 (organic) and 15 kg m–3(conventional), and were fed organically produced feed (45% crude protein, 14% fat) or conventional feed (46% crude protein, 17% fat). The amino acid profile of the conventional diet, particularly the lysine content, which is one of most important dietary amino acids for sea bream, appeared to be unsatisfactory. “Organic” sea bream stored less fat content in their white muscle than the conventional sea bream. The liver lipid content was lower and the hepatosomatic index was higher for the organic sea bream. The microbiological analysis showed that both Enterobacteriaceae and Escherichia coli on the skin were below the enumeration detection limit in both the organic and conventional sea bream. Total viable counts on the skin and muscle of both the organically and conventionally cultured sea bream were approximately 3 log cfu g–1, which is well below the acceptable limit (7 log cfu g–1) for marine species. The results showed that the combination of a low stocking density and feed with a different ingredient composition but similar nutritional value resulted in similar growth rates and nutrient profiles of the final product. Further research on nutrition is required to provide information on setting the appropriate standards for organic sea bream aquaculture to ensure that the final product is in line with the consumers’ preferences

    Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model

    Get PDF
    Our objective was to monitor chondrocyte gene expression at 0, 3, 7, and 14 days following in vitro impaction to the articular surface of porcine patellae. Patellar facets were either axially impacted with a cylindrical impactor (25 mm/sec loading rate) to a load level of 2000 N or not impacted to serve as controls. After being placed in organ culture for 0, 3, 7, or 14 days, total RNA was isolated from full thickness cartilage slices and gene expression measured for 17 genes by quantitative real-time RT-PCR. Targeted genes included those encoding proteins involved with biological stress, inflammation, or anabolism and catabolism of cartilage extracellular matrix. Some gene expression changes were detected on the day of impaction, but most significant changes occurred at 14 days in culture. At 14 days in culture, 10 of the 17 genes were differentially expressed with col1a1 most significantly up-regulated in the impacted samples, suggesting impacted chondrocytes may have reverted to a fibroblast-like phenotype

    Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis – A cross sectional study in 150 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hueter-Volkmann's law regarding growth modulation suggests that increased pressure on the end plate of bone retards the growth (Hueter) and conversely, reduced pressure accelerates the growth (Volkmann). Literature described the same principle in Rat-tail model. Human spine and its deformity i.e. scoliosis has also same kind of pattern during the growth period which causes wedging in disc or vertebral body.</p> <p>Methods</p> <p>This cross sectional study in 150 patients of adolescent idiopathic scoliosis was done to evaluate vertebral body and disc wedging in scoliosis and to compare the extent of differential wedging of body and disc, in thoracic and lumbar area. We measured wedging of vertebral bodies and discs, along with two adjacent vertebrae and disc, above and below the apex and evaluated them according to severity of curve (curve < 30° and curve > 30°) to find the relationship of vertebral body or disc wedging with scoliosis in thoracic and lumbar spine. We also compared the wedging and rotations of vertebrae.</p> <p>Results</p> <p>In both thoracic and lumbar curves, we found that greater the degree of scoliosis, greater the wedging in both disc and body and the degree of wedging was more at apex supporting the theory of growth retardation in stress concentration area. However, the degree of wedging in vertebral body is more than the disc in thoracic spine while the wedging was more in disc than body in lumbar spine. On comparing the wedging with the rotation, we did not find any significant relationship suggesting that it has no relation with rotation.</p> <p>Conclusion</p> <p>From our study, we can conclude that wedging in disc and body are increasing with progression on scoliosis and maximum at apex; however there is differential wedging of body and disc, in thoracic and lumbar area, that is vertebral body wedging is more profound in thoracic area while disc wedging is more profound in lumbar area which possibly form 'vicious cycle' by asymmetric loading to spine for the progression of curve.</p

    Diet-Quality Scores and the Risk of Type 2 Diabetes in Men

    Get PDF
    Objective: To 1) compare associations of diet-quality scores, which were inversely associated with cardiovascular disease, with incident type 2 diabetes and 2) test for differences in absolute-risk reduction across various strata. Research Design and Methods: Men from the Health Professionals Follow-Up Study, who were initially free of type 2 diabetes, cardiovascular disease, or cancer (n = 41,615), were followed for 20\leq 20 years. The Healthy Eating Index (HEI) 2005, the alternative HEI (aHEI) the Recommended Food Score, the alternative Mediterranean Diet (aMED) Score, and the Dietary Approaches to Stop Hypertension (DASH) Score were calculated from food-frequency questionnaires. Cox proportional hazard models with time-varying covariates were used to assess risk by quintiles and continuous intervals. Results: There were 2,795 incident cases of type 2 diabetes. After multivariate adjustment, the aHEI, aMED, and DASH scores were significantly associated with reduced risk. A 1-SD increase was associated with 9–13% reduced risk (P < 0.01), and the DASH score was associated with lower risk independent of other scores. These scores were associated with lower absolute risk among those who were overweight or obese compared with normal weight (P for interaction < 0.01). Conclusions: Several diet-quality scores were associated with a lower risk of type 2 diabetes and reflect a common dietary pattern characterized by high intakes of plant-based foods such as whole grains; moderate alcohol; and low intakes of red and processed meat, sodium, sugar-sweetened beverages, and trans fat. High-quality diets may yield the greatest reduction in diabetes cases when followed by those with a high BMI
    corecore