Modulation of resting connectivity between the mesial frontal

cortex and basal ganglia

Popa T^{* 1}, Morris LS^{* 2,3}, Hunt R ^{1,4}, Deng ZD ^{5,6}, Horovitz S ¹, Mente K ¹, Shitara H ¹, Baek K ⁷, Hallett M ¹, Voon V ^{2,7}

*equal contribution

¹ Human Motor Control Section, Medical Neurology Branch, National Institute of

Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA

² Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK

³ Department of Psychology, University of Cambridge, UK

⁴ Oakland University William Beaumont School of Medicine, Rochester, MI, USA

⁵ Non-Invasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology

Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA

⁶ Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine,

Durham, NC, USA

⁷ Department of Psychiatry, University of Cambridge, UK

Corresponding author:

Valerie Voon, University of Cambridge, Department of Psychiatry Addenbrooke's Hospital, Level E4, Box 189, Cambridge, UK, CB2 0QQ Email: vv247@cam.ac.uk, phone: +441223761 327

Running title: Modulation of mesial fronto-basal connectivity

Key words: cingulate cortex, ventral striatum, mesial prefrontal cortex, transcranial

magnetic stimulation, resting state connectivity

Abstract

Background: The mesial prefrontal cortex, cingulate cortex and the ventral striatum are key nodes of the human mesial fronto-striatal circuit involved in decision-making and executive function and pathological disorders. Here we ask whether deep wide-field repetitive transcranial magnetic stimulation (rTMS) targeting the mesial prefrontal cortex (MPFC) influences resting state functional connectivity.

Methods: In Study 1, we examined functional connectivity using resting state multi-echo and independent components analysis in 154 healthy subjects to characterize default connectivity in the MPFC and mid-cingulate cortex (MCC). In Study 2, we used inhibitory, 1Hz deep rTMS with the H7-coil targeting MPFC and dorsal anterior cingulate (dACC) in a separate group of 20 healthy volunteers and examined pre- and post-TMS functional connectivity using seed-based and independent components analysis.

Results: In Study 1, we show that MPFC and MCC have distinct patterns of functional connectivity with MPFC–ventral striatum showing negative, whereas MCC–ventral striatum showing positive functional connectivity. Low-frequency rTMS decreased functional connectivity of MPFC and dACC with the ventral striatum. We further showed enhanced connectivity between MCC and ventral striatum.

Conclusions: These findings emphasize how deep inhibitory rTMS using the H7-coil can influence underlying network functional connectivity by decreasing connectivity of the targeted MPFC regions, thus potentially enhancing response inhibition and decreasing drugcue reactivity processes relevant to addictions. The unexpected finding of enhanced default connectivity between MCC and ventral striatum may be related to the decreased influence and connectivity between the MPFC and MCC. These findings are highly relevant to the treatment of disorders relying on the mesio-prefrontal-cingulo-striatal circuit.

1 Introduction

2 Neuromodulation with magnetic stimulation is emerging as a valuable treatment alternative 3 for a wide range of psychiatric and neurologic disorders[1]. Repetitive transcranial 4 magnetic stimulation (rTMS) is a technique that can be used to apply multiple brief 5 magnetic pulses to neuronal structures, thus transiently modulating neural excitability in a 6 manner that is dependent mainly on the intensity and frequency of stimulation [2]. It is a 7 non-invasive, non-pharmacological, and safe treatment, in which abnormal communication 8 within neuronal networks can be entrained and modified. Depending on the target, the 9 depth at which stimulation occurs appears to be a crucial factor underlying potential 10 therapeutic efficacy in certain disorders, such as major depressive disorder[3; 4; 5]. In this 11 study, we investigate the modulation of resting neural activity in mesial prefrontal-striatal 12 circuits in healthy subjects by inhibitory deep wide-field stimulation with an Hesed (H-)7 13 coil[6; 7].

14 Fronto-striatal circuits are critical for the processing of reward, anticipation of outcomes, 15 and behavioral control[8; 9; 10; 11]. Latent neural network organization and behavioral 16 mechanisms in humans can be explored with resting state functional magnetic resonance 17 imaging (fMRI) connectivity (rsFC), a method that measures the synchronization between 18 intrinsic low-frequency fluctuations of brain regions in the absence of any specific task[12; 19 13; 14]. Since the connections identified at rest closely mirror anatomical connections[15] 20 and predict brain activations associated with behavioral performance[16], rsFC is an 21 important tool for characterizing in vivo circuit-level dynamics, which may support 22 particular behavioral responses[17; 18].

Studies of substance use disorders have revealed the critical role of fronto-striatal circuits,
highlighting large scale disruptions in functional connectivity between the mesolimbic

Popa, Morris et al.

25	reward system and cortical regions involved in decision making and executive function (e.g.
26	ventromedial prefrontal cortex, dorsolateral prefrontal cortex)[19; 20; 21; 22; 23; 24; 25;
27	26; 27]. In particular, altered rsFC between the dorsal and ventral mesial prefrontal cortex
28	(d/vMPFC), anterior cingulate cortex (ACC) and ventral striatum (VS) is most consistently
29	observed across disorders of addiction such as cocaine[28], heroin[29], nicotine[30; 31; 32;
30	33], and even internet addiction[32; 34; 35], but also in obsessive-compulsive disorder
31	(OCD)[34]. Furthermore, vMPFC activity seems to be tightly linked to dMPFC activity[36;
32	37]. Thus, understanding whether and how deep rTMS targeting the MPFC influences the
33	connected networks is critical to its potential clinical efficacy.
34	In Study 1, we first assess rsFC between MPFC and striatum in a relatively large sample of
35	healthy controls. In Study 2, we then ask whether inhibitory deep wide-field stimulation
36	with an H7-coil positioned over the MPFC (which, given the non-focal nature of the H7-
37	coil[38; 39], we have defined here as supplementary motor area (SMA), preSMA, and
38	dMPFC) influences rsFC with VS in a separate group of healthy controls. We focused on VS
39	given its aberrant rsFC observed in pathological disorders as well as in our findings in Study
40	1 of negative connectivity of MPFC with VS and positive connectivity of mid-cingulate with
41	VS. We hypothesize that low-frequency inhibitory rTMS will decrease rsFC of the MPFC
42	with VS.

43

44 Methods and Materials

45 **Protocol design and participants**

46 In Study 1, seed to whole brain intrinsic rsFC was examined for the mesial PFC (SMA, pre-

47 SMA and dMPFC) and the mid-cingulate. For intrinsic baseline mapping, blood-oxygenation

48 level dependent (BOLD) fMRI data was collected during rest (10 minutes, eyes open,

Popa, Morris et al.

49	watching white fixation cross on black s	creen) from 154 healthy volunte	ers (71 females;

age 31±13 years) at the Wolfson Brain Imaging Centre, University of Cambridge, UK, with a

51 Siemens Tim Trio 3T scanner and 32-channel head coil.

- 52 In Study 2, we used inhibitory, 1Hz rTMS deep wide-field stimulation with an H7-coil
- 53 targeting the mesial PFC. In order to examine the effects of rTMS on neural fluctuations, we

54 used both ROI-to-ROI analyses and confirmed findings with independent component

analysis (ICA). Resting state fMRI data (10 minutes, eyes open, watching white fixation

56 cross) was collected immediately before and after rTMS (average time between rTMS end

and EPI sequence was 285±27 seconds) in a separate group of 20 healthy volunteers (15

females; age 36±12 years) at the National Institutes of Health (Bethesda, MD, USA) core

59 fMRI Facility, with a Siemens Skyra 3T scanner and 32-channel head coil.

60 All subjects provided informed written consent. This study was approved by the Research

61 Ethics Committee of the University of Cambridge and the Institutional Review Board of the

62 National Institutes of Health.

63 Transcranial magnetic stimulation with the H-coil (Study 2)

64 To modulate the excitability of deep frontal areas in Study 2, we used a Hesed coil type 7 65 (H7-coil). Its design aims at stimulating frontal brain regions (i.e., the PFC) and reaching 66 deep brain regions without increasing the electric field levels in the more superficial 67 cortical regions [6; 40]. Deep TMS using other coils (e.g. classical double-cone coil) can be 68 uncomfortable due to excessive stimulation of superficial structures and painful muscular 69 contractions. The frames of the inner rim of H7-coil are also flexible to accommodate a 70 variety of human skull shapes and allow a comfortable and closer fit of the coils to the scalp 71 (Supplementary Figure S1).

72 We first found the hotspot and determined the active motor threshold (AMT) of the *Tibialis*

73 *anterior muscle*, as an area situated medially at a depth similar to our regions of interest

74 (Figure 1A). The AMT was defined as the lowest intensity able to evoke a motor potential 75 with an amplitude at least 200µV above the background EMG activity of a 10% maximal 76 voluntary contraction of the left Tibialis anterior in 5 out of 10 consecutive trials. The coil 77 was always maintained in the midline to avoid the problem of left-right anatomical and 78 functional asymmetry, on top of the unknown exact geometrical location of the maximum 79 field intensity of the H7-coil. In this way, the threshold determined for the left TA 80 corresponded to an intensity strong enough to evoke action potentials in the pyramidal 81 neurons on the mesial cortex at that depth in each individual. Repetitive TMS was delivered 82 with a biphasic magnetic stimulator (Magstim Rapid2; The Magstim Company, Whitland, 83 South West Wales, UK) with a frequency of 1Hz and at 110% AMT intensity. Nine hundred 84 pulses were administered over the MPFC, 5 cm anterior to the Tibialis anterior hot-spot, for 85 15min. By choosing this location, we assured that the maximum field would cross areas BA 86 8/9. which are located in front of the peSMA [41: 42]. When administered in accordance 87 with current international guidelines, transcranial magnetic stimulation has been shown to 88 be safe[43; 44], with few mild adverse effects, although we acknowledge that these safety 89 guidelines are derived primarily from studies using conventional figure-8 coils. 90 We used medium intensity stimulation (i.e., 110% of the active motor threshold; average 91 effective intensity 66±8% of the maximum stimulator output) of the H7-coil, which would 92 have penetrated effectively up to a depth of 3.5cm from the surface of the scalp (Figure 1B), 93 corresponding to the mesial PFC region (Figure 1C). 94 - please insert Figure 1 here -

95 Resting state functional MRI

96 The following describes the resting state acquisitions and analyses used for Study 1 and 2.

- 97 Acquisition Study 1: Functional images were acquired with a multi-echo echo planar
- 98 imaging sequence with online reconstruction (repetition time (TR), 2.47s; flip angle, 78°;

- 99 matrix size 64 x 64; resolution 3.0 x 3.0 x 3.0 mm; FOV, 240mm; 32 oblique slices,
- alternating slice acquisition slice thickness 3.75mm with 10% gap; iPAT factor, 3;
- 101 bandwidth (BW) = 1698Hz/pixel; echo time (TE) = 12, 28, 44 and 60ms).
- 102 Study 2: Functional images were acquired with a multi-echo echo planar imaging sequence
- 103 (TR, 2.47s; flip angle, 70°; matrix size 70 x 60; in-plane resolution, 3.0mm; FOV, 210mm; 34
- 104 oblique slices, alternating slice acquisition slice thickness 3.0mm with 0% gap; iPAT factor,
- 105 3; bandwidth (BW) = 2552Hz/pixel; TE = 12, 28, 44, and 60ms).
- 106 For both studies, anatomical images were acquired using a T1-weighted magnetization
- 107 prepared rapid gradient echo (MPRAGE) sequence (76 x 240 field of view (FOV); resolution
- 108 1.0 x 1.0 x 1.0 mm; inversion time, 1100ms).

109 Preprocessing

- 110 The following processing and analyses apply to both resting state fMRI data unless stated
- 111 otherwise. To enhance signal-to-noise ratio, we used multi-echo EPI sequence and
- 112 independent component analysis (ICA), which allows data to be denoised for motion,
- 113 physiological, and scanner artifacts in a robust manner based on physical principles [45].
- 114 Multi-echo independent component analysis (ME-ICA v2.5 beta6; <u>http://afni.nimh.nih.gov</u>)
- 115 was used for data analysis and denoising. ME-ICA decomposes the functional data into
- 116 independent components using FastICA. BOLD percent signal changes are linearly
- dependent on echo time (TE), a characteristic of the T2* decay. TE dependence of BOLD
- 118 signal is measured using the pseudo-F-statistic, Kappa, with components that scale strongly
- 119 with TE having high Kappa scores[46]. Non-BOLD components are TE independent and
- 120 measured by the pseudo-F-statistic, Rho. Components are thus categorized as BOLD or non-
- 121 BOLD based on their Kappa and Rho weightings, respectively. Non-BOLD components are
- 122 removed by projection, robustly denoising data. Each individual's denoised echo planar
- 123 images were coregistered to their MPRAGE and normalized to the Montreal Neurological

- 124 Institute (MNI) template. Spatial smoothing of the functional data was performed with a
- 125 Gaussian kernel (full width half-maximum = 6mm).

126 Region of interest (ROI)-driven analysis

- 127 We performed ROI-driven functional connectivity analysis using CONN-fMRI Functional
- 128 Connectivity toolbox[47] for Statistical Parametric Mapping SPM8
- 129 (<u>http://www.fil.ion.ucl.ac.uk/spm/software/spm8/</u>), using denoised, coregistered,
- 130 smoothed functional data. The time course for each voxel was temporally band-pass filtered
- 131 (0.008 < f < 0.09 Hz). Each individual's anatomical scan was segmented into grey matter,
- 132 white matter and cerebrospinal fluid. Significant principle components of the signals from
- 133 white matter and cerebrospinal fluid were removed.
- 134 Study 1: Intrinsic functional connectivity mapping
- 135 For intrinsic rsFC mapping in 154 healthy volunteers, ROI-to-whole brain connectivity was
- 136 computed for mesial PFC and mid cingulate ROI's. Connectivity maps were thresholded at
- 137 FWE p<0.05 whole brain corrected. Both positive and negative functional connectivity was
- examined across the whole brain. Anatomically-defined ROIs were manually created or
- altered using MarsBaR ROI toolbox[48] for SPM (see Supplementary Methods for seed
- 140 definitions)
- 141 Study 2: Effects of rTMS: ROI-based
- 142 To address the *a priori* hypothesis, ROI-to-ROI functional connectivity was first computed
- 143 using Pearson's correlation between BOLD time courses for mesial PFC with ventral
- striatum, both pre- and post-TMS. These were entered into a paired samples t-test to
- 145 compare between pre- and post-TMS. For the *a priori* ROI-to-ROI functional connectivity
- analysis between the mesial PFC and VS, p<0.05 was considered significant. On an
- exploratory basis, to assess the impact of rTMS on rsFC of deeper structures such as the

148 mid-cingulate which lies immediately below the mesial PFC, ROI-to-ROI functional

149 connectivity of mesial PFC to mid cingulate and mid cingulate to VS were examined pre- and

150 post-TMS. P<0.025 was considered significant (Bonferonni corrected for multiple

151 comparisons). The VS anatomical ROI has previously been used[49] and hand drawn using

- 152 MRIcro (http://www.cabiatl.com/mricro/mricro/) based on a published definition of
- 153 VS[50].

154 Effects of rTMS: Independent component analysis (Study 2)

155 To confirm the ROI-to-ROI findings, we then conducted ICA. While ICA has been shown to 156 engender statistically similar results as seed based approaches in healthy volunteers[51]. 157 ICA is a multivariate data-driven approach that requires fewer *a priori* assumptions and 158 takes into account interacting networks. Therefore, if TMS affects larger scale neural 159 networks, ICA should succeed in highlighting this. Denoised, coregistered, and smoothed 160 functional data was entered into ICA analysis using FSL MELODIC 3.14 software (FMRIB, 161 University of Oxford, UK; www.fmrib.ox.ac.uk/fsl/melodic2/index.html) that performs 162 probabilistic ICA to decompose data into independently distributed spatial maps and 163 associated time courses to identify independent component variables[52]. A high model 164 order of 40 was used as a fair compromise between under- and over-fitting[53]. Multi-165 session temporal concatenation was used to allow computation of unique temporal 166 responses per subject/session. Comparisons between pre- and post-TMS was performed 167 using FSL dual regression for reliable and robust[54] voxel-wise comparisons using 168 nonparametric permutation testing with 5000 permutations and using threshold free 169 cluster enhancement (TFCE) controlling for multiple comparisons[55]. Group differences of 170 components that include MPFC were calculated with p<0.05 thresholds. 171

172 **Results**

173 Baseline mapping

- 174 Intrinsic resting state whole brain connectivity maps for mesial PFC and mid cingulate are
- displayed in Figure 2 and reported in Supplementary Table S1 and S2. Both positive and
- 176 negative functional connectivity are displayed. Mesial PFC and mid cingulate showed
- 177 opposite patterns of connectivity with ventral striatum: mesial PFC had negative but mid
- 178 cingulate had positive functional connectivity with VS.
- 179 please insert Figure 2 here -

180 Effects of TMS

- Focusing on our *a priori* hypothesis, we show that after rTMS, mesial PFC had reduced
- 182 functional connectivity with ventral striatum (t=2.201, p=0.043) (Figure 3). We then show
- an effect on mid-cingulate functional connectivity with reduced functional connectivity
- following rTMS between the mesial PFC and mid-cingulate (t=4.325, p=0.001) and
- enhanced functional connectivity between mid-cingulate and VS (t=-2.495 p=0.024).
- 186

- please insert Figure 3 here -

- 187 We conducted ICA on the resting state data pre- and post-rTMS to confirm our *a priori*
- 188 hypothesis and analysis. Out of 40 components, three included prominent mesial frontal
- 189 cortex (Figure 4 and Supplementary Table S3). Of the three mesial frontal network
- 190 components, dual regression revealed that one of these components (IC11) was
- significantly decreased post-rTMS (TFCE p=0.0360). The IC00 included prominent dmPFC;
- the IC11 included dmPFC, preSMA, and SMA; the IC38 included prominent anterior and mid
- 193 cingulate, and dmPFC. The dmPFC/ACC can be considered part of the dorsal attention

194 network.

195

- please insert Figure 4 here -

196

197 **Discussion**

198 We characterized the effects of deep wide-field mesial prefrontal rTMS on the resting-state 199 functional network in healthy individuals. We first mapped intrinsic functional connectivity 200 of mesial prefrontal and mid-cingulate cortical regions in a large sample of healthy 201 volunteers. We found that intrinsic functional connectivity of the mesial PFC region of 202 interest with ventral striatum was negative, whereas the intrinsic functional connectivity of 203 mid-cingulate connectivity with ventral striatum was positive. Then, we show that deep 204 wide-field inhibitory rTMS targeting the mesial PFC decreases rsFC between this broad 205 mesial PFC region and the ventral striatum. These findings were further confirmed with ICA 206 analysis, a data-driven approach. Based on the modeling of the magnetic field distribution, 207 induced-electrical field decay, and the depth of the target region stimulated, we likely also 208 inhibited directly the dorsal posterior regions of Brodmann Area 32, corresponding to 209 dorsal anterior cingulate – a fact subsequently confirmed by the ICA analysis. Inhibitory 210 rTMS also decreased functional connectivity of the 'stopping' network including pre-SMA, 211 right inferior frontal cortex, and ventral caudate. This is in line with previous reports, in 212 which inhibitory rTMS (including continuous theta burst stimulation) targeting the pre-213 SMA with standard figure-of-eight coil has been shown to enhance motor response 214 inhibition [56]. 215 We also found effects of deep rTMS on connectivity between deeper structures such as the 216 mid-cingulate cortex, which was unlikely to be directly stimulated with our stimulation 217 parameters: decreased rsFC between the broad mesial PFC and mid-cingulate cortex, and, 218 unexpectedly, enhanced rsFC between mid-cingulate cortex and ventral striatum. These 219 findings suggest that while deep wide-field mesial prefrontal inhibitory rTMS might directly

Popa, Morris et al.

decrease the functional connectivity between the stimulated and the connected structures,
the decreased influence from superficial cortical regions might indirectly enhance the
intrinsic connectivity between remote structures (i.e., the mid-cingulate cortex and ventral
striatum).

224 Application of rTMS to superficial cortical regions with the strongest negative functional 225 connectivity with subgenual ACC has already been shown to be most clinically efficacious in 226 reducing depression[57]. Thus, based on the deep cortical or subcortical structure of 227 interest for a given disorder, appropriate superficial sites for rTMS can be selected based on 228 intrinsic functional connectivity strengths and patterns. Since we demonstrate in our 229 second study that there is an exaggeration of intrinsic functional connectivity strengths 230 with deep inhibitory rTMS, detailed mapping of baseline connectivity patterns will inform 231 the selection of rTMS targets with the aim to 'normalize' aberrant underlying functional 232 connectivity in disease states. The outcome of this modulation could be of interest in the 233 treatment of disorders relying on the mesioprefrontal-cingulo-striatal circuit. 234 The H-coil series was originally designed to have a significant impact on deep structures. 235 like the anterior cingulate cortex[6; 7]. It has been used with different degrees of success to 236 treat depression [58; 59], alcohol use disorders [60], nicotine addiction [61], and even as 237 adjunctive therapy in Parkinson's disease[62], blepharospasm [63], and chronic migraine 238 [64]. Due to the quick drop in TMS efficacy with increasing target depth[65], it has been 239 proposed that any stimulation outside the primary motor cortex should be referenced to 240 motor cortex excitability and adjusted to the target depth[66: 67]. The original assertion 241 that the H-coil can modulate the activity of deep structures has been based mainly on 242 calculating the intensity of the induced electrical field at different depths for a given 243 stimulation intensity [40]. However, other factors can significantly influence the efficacy of 244 rTMS, including the orientation of the coil[68; 69; 70] and the configuration of the subjacent

245 and/or target cortex[71; 72; 73; 74; 75], as well as the secondary electrical fields generated 246 at the boundary between the cerebrospinal fluid and the gray matter [76]. Subsequent 247 studies of the distribution of the magnetic field generated by the H-coil revealed that the 248 largest field intensity variation and hence, the functional effect covers first the mesial 249 neuronal structures in close proximity to the coil, i.e., superior MF areas, like dMPFC, pre-250 SMA, SMA[40; 77; 78; 79], and only secondarily deeper structures such as the cingulate 251 cortex if stimulation intensity is high enough [7; 40]. In order to reach the stimulation 252 threshold of neurons, a total field of 30–100 V/m is needed, depending on the neurons [80]. 253 Since focal coils, like flat 8-shaped or double-cone coils, produce very strong fields that 254 decay fast as a function of distance, 500 V/m would be induced at 1 cm depth (i.e. scalp) for 255 50 V/m at 5cm, which would be very uncomfortable due to superficial muscle contraction 256 under the stimulated site[6]. According to our simulations (Figure 1B) using a spherical 257 head model, the structure of the H7-coil induces only 150V/m at 1cm in the same 258 conditions, albeit at the cost of focality, making it more tolerable. In this study, we used 259 medium intensity stimulation (i.e., 110% of the active motor threshold; average effective 260 intensity 66±8% of the maximum stimulator output), which would have stimulated a region 261 of interest corresponding to the mesial PFC. This allowed us to influence directly the output 262 of these areas and indirectly the activity of functionally linked structures[81; 82; 83; 84; 85; 263 86]. Based on the simulated model of the target and depth reached using our stimulation 264 parameters, we likely directly stimulated down to dorsal posterior regions of Brodmann Area 265 32 corresponding to dorsal anterior cingulate. However, it is unlikely that we directly 266 stimulated the mid-cingulate; thus any change in connectivity observed in the mid-cingulate 267 would likely be an indirect effect via changing the functional output of connected areas. 268 Here, we extend the understanding of the effects of magnetic stimulation over the middle 269 frontal areas, following previous TMS studies investigating more superficial stimulation of

the lateral frontal areas[57; 87; 88; 89]. Subsequent studies are indicated to investigate the
influence of higher intensities and higher frequencies[90] on rsFC of frontal superficial and
deep structures, when applied with coils designed to reach broader regions. The magnetic
field generated by an H7-coil is covering a much wider area of the frontal lobe, but as with
the classical double-cone coil, which has a similar shape but smaller, the magnetic field
generated at the edges of the coil is assumed to be non-focal and weak enough as not to
induce a meaningful neuronal depolarization.

277 We delivered magnetic pulses at 1Hz for 15 minutes. This frequency can induce a long term 278 depression (LTD)-like effect in the targeted neuronal networks that outlasts the stimulation 279 for a sufficient duration to assess the influence on resting-state fMRI[91; 92; 93; 94]. By 280 using low stimulation intensities, we effectively depressed the excitability of the superior 281 mesial prefrontal areas and possibly also the dorsal posterior region of Brodmann Area 32 282 corresponding to dorsal anterior cingulate cortex. An LTD-like effect would thus decrease 283 neuronal excitability in the mesial PFC, rendering it less responsive to incoming 284 information. Decreased responsiveness would functionally decouple this region from both 285 neighboring and deeper structures. Indeed, we found reduced functional connectivity of the 286 broad mesial PFC with mid-cingulate, and between the broad mesial PFC and ventral 287 striatum, with ICA confirming decreases in the network including mesial PFC, dorsal 288 anterior cingulate and ventral caudate/ventral striatum. Since the fronto-striatal network 289 relies on a dynamic equilibrium between its different parts[11; 95; 96], functionally 290 "nudging" one part should entrain a reconfiguration of all functional connections, including 291 functional connectivity between remote regions receiving projections from the stimulated 292 region. This seems to be the case in our study: we found increased functional connectivity 293 between the mid-cingulate area and ventral striatum after inhibiting the mesial PFC.

Popa, Morris et al.

294	The outcome of this modulation could be of interest in treatment of disorders relying on the
295	mesioprefrontal-cingulo-striatal circuit. In healthy humans, this circuit is involved in
296	cognitive and emotional control, error and conflict monitoring[97; 98; 99], response
297	inhibition[100], and positive and negative prediction error and anticipation[101; 102; 103].
298	Abnormal cortico-ventro striatal hyperconnectivity has been OCD[104; 105; 106] and
299	addictions (for a review see[107]). In disorders of addiction, decreased functional
300	connectivity between the ventral striatum and the cingulate cortex bilaterally is commonly
301	observed[29; 32], with enhanced dorsal cingulate and ventral striatal activity in the context
302	of drug cues[108]. Numerous targets had been proposed for invasive deep brain stimulation
303	aimed at correcting these imbalances, including the anterior limb of the internal
304	capsule[109], subthalamic nucleus[110], and ventral striatum/nucleus accumbens[111]. In
305	order to avoid the risks of an invasive procedure, studies have explored stimulating other
306	nodes of these networks that are accessible to TMS at the surface of the brain. Stimulation of
307	the dorsolateral prefrontal cortex, is (arguably[58; 59]) successful in treatment-resistant
308	major depressive disorder[4; 112], with modest results in OCD[113]. On the other hand,
309	stimulation of the dorso-medial prefrontal cortex [114] or preSMA/SMA complex[115; 116;
310	117] seems slightly more encouraging. Notably, there is no gold standard yet for the
311	frequencies to be used. The stimulation frequencies used thus far in most studies cover a
312	wide range including continuous delivery at 1Hz, or intermittently at 10 or 18Hz in 5s trains
313	separated by breaks of 10s. While 1Hz stimulation is known to induce LTD-like effects, the
314	mechanism of action and the eventual outcome of other multiple medium-frequency trains
315	is still open to debate and investigation[118; 119].
316	Wide inhibitory stimulation of the dorso-mesial areas of the frontal lobe might have both
317	clinical and mechanistic benefit. Wider superficial stimulation has a clear clinical benefit

allowing a reduction in the intensity of the stimulation with deeper stimulation, thus

Popa, Morris et al.

319 increasing patients' comfort and adherence by decreasing superficial muscle contraction, 320 and minimizing risks. Aberrant activity in networks in psychiatric disorders may affect 321 broader regions that can be targeted via wide inhibitory stimulation. We show that 322 stimulation that is both wide and deep is associated with decreased connectivity between 323 the mesial prefrontal areas and deeper structures (like the mid-cingulate areas and ventral 324 striatum), with possibly a secondary effect of increasing connectivity between cingulate and 325 ventral striatum. Wider stimulation will also have a broader effect on multiple neural 326 regions, impacting a wide range of cognitive functions. Using the H7-coil with inhibitory 327 rTMS is thus consistent with both inhibition of the pre-SMA shown to enhance motor 328 response inhibition[56] and decreased dorsal cingulate activity associated with drug cue 329 reactivity [108]. Therefore, the H7-coil has the capacity to both enhance the response 330 inhibition associated with the stopping network in disorders of addiction, and decrease 331 drug cue reactivity associated with the dorsal cingulate and ventral striatum. However, it is 332 unclear whether decreasing dorsal cingulate activity across all conditions would be the 333 optimal approach, as resting state functional connectivity between cingulate and ventral 334 striatal regions are commonly decreased in disorders of addiction. Further studies 335 investigating a state-specific effect of rTMS may be relevant with pairing H-coil stimulation 336 with drug cues with or without concurrent response inhibition. It also remains to be 337 established whether our findings are specific to wide-field deep rTMS or whether focal deep 338 rTMS (which is be more difficult to tolerate) would show similar rsFC pattern changes 339 within cingulate regions. 340 This study is not without limitations. While we did not have a sham control, we note that 341 our findings revealed both increases and decreases in connectivity – suggesting that an 342 order effect is unlikely to account for these observations. It is also technically impossible to

343 achieve a realistic sham with the H-coil, since the real stimulation evokes a specific,

Popa, Morris et al.

344 unconfoundable small contraction of the anterior belly of the occipitofrontal muscle. The

345 localization of the peak stimulus effect is also more difficult with the H-coil, since the coils'

346 positions inside the helmet are flexible and the precise technical characteristics of the coils

347 are proprietary to the company. We do present, however, an X-ray of the coil structure and

348 the geometrical approximation of the coil used in the modeling of the magnetic field

349 penetration depth (Supplemental Figure 1). Subsequent studies testing higher frequencies

and/or intensities are indicated, as well as repeated stimulation sessions (over minimum 4

351 weeks) in preparation for clinical trials.

352 We highlight that non-invasive wide and deep inhibitory brain stimulation appears to

decrease the underlying functional connectivity of regions immediately within the

354 stimulation zone while enhancing functional connectivity of deeper structures such as mid-

355 cingulate to ventral striatum. This unexpected finding might be related to the decreased

356 influence from superficial cortical regions via decreased cortico-cortical connectivity. A

deep wide-field coil allows both greater tolerability and the capacity to influence multiple

358 relevant neural regions and cognitive functions. These dissociable findings may be relevant

359 particularly to disorders of addiction and OCD, and have implications for designing

360 interventional deep rTMS studies.

361

363 Acknowledgements

364 We thank our subjects for taking part in this study and the NMR Center personnel for the

365 efficient assistance.

366 This manuscript has been released as a Pre-Print [120] at

367 https://www.biorxiv.org/content/10.1101/432609v1

368

369 Financial disclosures

370 This study was supported in part by the Intramural Research Program of the National

371 Institutes of Health, National Institute of Neurological Disorders and Stroke, and from Dr.

372 Voon's Wellcome Trust Fellowship (093705/Z/10/Z).

373 Dr. Popa reported no biomedical financial interests or potential conflicts of interest.

374 Dr. Morris reported no biomedical financial interests or potential conflicts of interest.

375 Mrs Hunt reported no biomedical financial interests or potential conflicts of interest.

376 Dr. Deng reported no biomedical financial interests or potential conflicts of interest.

377 Dr. Horowitz reported no biomedical financial interests or potential conflicts of interest.

378 Dr. Mente reported no biomedical financial interests or potential conflicts of interest.

379 Dr. Baek reported no biomedical financial interests or potential conflicts of interest.

380 Dr. Voon is a Medical Research Council Senior Clinical Fellow (MR/P008747/1).

381 Dr. Hallett may accrue revenue on US Patent #7,407,478 (Issued: August 5, 2008): Coil for

382 Magnetic Stimulation and methods for using the same (H-coil). He has received license fee

383 payments from the NIH (from Brainsway) for licensing of this patent.

384

386 References

387	[1] F.S. Bersani, A. Minichino, P.G. Enticott, L. Mazzarini, N. Khan, G. Antonacci, R.N.
388	Raccah, M. Salviati, R. Delle Chiaie, G. Bersani, P.B. Fitzgerald, and M. Biondi,
389	Deep transcranial magnetic stimulation as a treatment for psychiatric
390	disorders: a comprehensive review. European psychiatry : the journal of the
391	Association of European Psychiatrists 28 (2013) 30-9.
392	[2] Y. Roth, F. Padberg, and A. Zangen, Transcranial Magnetic Stimulation of Deep
393	Brain Regions: Principles and Methods. in: M. Marcolin, and F. Padberg,
394	(Eds.), Transcranial Brain Stimulation for Treatment of Psychiatric Disorders,
395	Karger, Basel, 2007, pp. 204-224.
396	[3] M.T. Berlim, A. McGirr, F. Van den Eynde, M.P. Fleck, and P. Giacobbe,
397	Effectiveness and acceptability of deep brain stimulation (DBS) of the
398	subgenual cingulate cortex for treatment-resistant depression: a systematic
399	review and exploratory meta-analysis. Journal of affective disorders 159
400	(2014) 31-8.
401	[4] M.T. Berlim, F. Van den Eynde, S. Tovar-Perdomo, E. Chachamovich, A. Zangen,
402	and G. Turecki, Augmenting antidepressants with deep transcranial magnetic
403	stimulation (DTMS) in treatment-resistant major depression. The world
404	journal of biological psychiatry : the official journal of the World Federation
405	of Societies of Biological Psychiatry 15 (2014) 570-8.
406	[5] J.P. Lefaucheur, N. Andre-Obadia, A. Antal, S.S. Ayache, C. Baeken, D.H. Benninger,
407	R.M. Cantello, M. Cincotta, M. de Carvalho, D. De Ridder, H. Devanne, V. Di
408	Lazzaro, S.R. Filipovic, F.C. Hummel, S.K. Jaaskelainen, V.K. Kimiskidis, G.
409	Koch, B. Langguth, T. Nyffeler, A. Oliviero, F. Padberg, E. Poulet, S. Rossi, P.M.
410	Rossini, J.C. Rothwell, C. Schonfeldt-Lecuona, H.R. Siebner, C.W. Slotema, C.J.
411	Stagg, J. Valls-Sole, U. Ziemann, W. Paulus, and L. Garcia-Larrea, Evidence-
412	based guidelines on the therapeutic use of repetitive transcranial magnetic
413	stimulation (rTMS). Clinical neurophysiology : official journal of the
414	International Federation of Clinical Neurophysiology 125 (2014) 2150-206.
415	[6] Y. Roth, A. Zangen, and M. Hallett, A coil design for transcranial magnetic
416	stimulation of deep brain regions. J Clin Neurophysiol 19 (2002) 361-70.
417	[7] A. Zangen, Y. Roth, B. Voller, and M. Hallett, Transcranial magnetic stimulation of
418	deep brain regions: evidence for efficacy of the H-coil. Clinical
419	neurophysiology : official journal of the International Federation of Clinical
420	Neurophysiology 116 (2005) 775-9.
421	[8] E.K. Miller, The prefrontal cortex and cognitive control. Nature reviews.
422	Neuroscience 1 (2000) 59-65.
423	[9] O. Hikosaka, and M. Isoda, Switching from automatic to controlled behavior:
424	cortico-basal ganglia mechanisms. Trends in cognitive sciences 14 (2010)
425	154-61.
426	[10] I. Lee, and C.H. Lee, Contextual behavior and neural circuits. Frontiers in neural
427	circuits 7 (2013) 84.
428	[11] L.S. Morris, P. Kundu, N. Dowell, D.J. Mechelmans, P. Favre, M.A. Irvine, T.W.
429	Robbins, N. Daw, E.T. Bullmore, N.A. Harrison, and V. Voon, Fronto-striatal

430	organization: Defining functional and microstructural substrates of
431	behavioural flexibility. Cortex 74 (2016) 118-33.
432	[12] B. Biswal, F.Z. Yetkin, V.M. Haughton, and J.S. Hyde, Functional connectivity in
433	the motor cortex of resting human brain using echo-planar MRI. Magnetic
434	resonance in medicine 34 (1995) 537-41.
435	[13] B.B. Biswal, J. Van Kylen, and J.S. Hyde, Simultaneous assessment of flow and
436	BOLD signals in resting-state functional connectivity maps. NMR in
437	biomedicine 10 (1997) 165-70.
438	[14] J.L. Vincent, G.H. Patel, M.D. Fox, A.Z. Snyder, J.T. Baker, D.C. Van Essen, J.M.
439	Zempel, L.H. Snyder, M. Corbetta, and M.E. Raichle, Intrinsic functional
440	architecture in the anaesthetized monkey brain. Nature 447 (2007) 83-6.
441	[15] S.M. Smith, P.T. Fox, K.L. Miller, D.C. Glahn, P.M. Fox, C.E. Mackay, N. Filippini,
442	K.E. Watkins, R. Toro, A.R. Laird, and C.F. Beckmann, Correspondence of the
443	brain's functional architecture during activation and rest. Proceedings of the
444	National Academy of Sciences of the United States of America 106 (2009)
445	13040-5.
446	[16] W.W. Seeley, V. Menon, A.F. Schatzberg, J. Keller, G.H. Glover, H. Kenna, A.L.
447	Reiss, and M.D. Greicius, Dissociable intrinsic connectivity networks for
448	salience processing and executive control. The Journal of neuroscience : the
449	official journal of the Society for Neuroscience 27 (2007) 2349-56.
450	[17] M.E. Raichle, and M.A. Mintun, Brain work and brain imaging. Annual review of
451	neuroscience 29 (2006) 449-76.
452	[18] M. Greicius, Resting-state functional connectivity in neuropsychiatric disorders.
453	Current opinion in neurology 21 (2008) 424-30.
454	[19] N.A. Fineberg, M.N. Potenza, S.R. Chamberlain, H.A. Berlin, L. Menzies, A.
455	Bechara, B.J. Sahakian, T.W. Robbins, E.T. Bullmore, and E. Hollander, Probing
456	compulsive and impulsive behaviors, from animal models to
457	endophenotypes: a narrative review. Neuropsychopharmacology : official
458	publication of the American College of Neuropsychopharmacology 35 (2010)
459	591-604.
460	[20] J. Feil, D. Sheppard, P.B. Fitzgerald, M. Yucel, D.I. Lubman, and J.L. Bradshaw,
461	Addiction, compulsive drug seeking, and the role of frontostriatal
462	mechanisms in regulating inhibitory control. Neuroscience and biobehavioral
463	reviews 35 (2010) 248-75.
464	[21] J. Camchong, A.W. MacDonald, 3rd, B. Nelson, C. Bell, B.A. Mueller, S. Specker,
465	and K.O. Lim, Frontal hyperconnectivity related to discounting and reversal
466	learning in cocaine subjects. Biological psychiatry 69 (2011) 1117-23.
467	[22] Y. Sakai, J. Narumoto, S. Nishida, T. Nakamae, K. Yamada, T. Nishimura, and K.
468	Fukui, Corticostriatal functional connectivity in non-medicated patients with
469	obsessive-compulsive disorder. European psychiatry : the journal of the
470	Association of European Psychiatrists 26 (2011) 463-9.
471	[23] C.E. Wilcox, T.M. Teshiba, F. Merideth, J. Ling, and A.R. Mayer, Enhanced cue
472	reactivity and fronto-striatal functional connectivity in cocaine use disorders.
473	Drug and alcohol dependence 115 (2011) 137-44.

474	[24] A.B. Konova, S.J. Moeller, and R.Z. Goldstein, Common and distinct neural
475	targets of treatment: changing brain function in substance addiction.
476	Neuroscience and biobehavioral reviews 37 (2013) 2806-17.
477	[25] S. Koehler, S. Ovadia-Caro, E. van der Meer, A. Villringer, A. Heinz, N.
478	Romanczuk-Seiferth, and D.S. Margulies, Increased functional connectivity
479	between prefrontal cortex and reward system in pathological gambling. PloS
480	one 8 (2013) e84565.
481	[26] D. Tomasi, and N.D. Volkow, Striatocortical pathway dysfunction in addiction
482	and obesity: differences and similarities. Critical reviews in biochemistry and
483	molecular biology 48 (2013) 1-19.
484	[27] Y. Abe, Y. Sakai, S. Nishida, T. Nakamae, K. Yamada, K. Fukui, and J. Narumoto,
485	Hyper-influence of the orbitofrontal cortex over the ventral striatum in
486	obsessive-compulsive disorder. European neuropsychopharmacology : the
487	journal of the European College of Neuropsychopharmacology 25 (2015)
488	1898-905.
489	[28] K.M. Wisner, E.H. Patzelt, K.O. Lim, and A.W. MacDonald, 3rd, An intrinsic
490	connectivity network approach to insula-derived dysfunctions among
491	cocaine users. The American journal of drug and alcohol abuse 39 (2013)
492	403-13.
493	[29] W. Wang, Y.R. Wang, W. Qin, K. Yuan, J. Tian, Q. Li, L.Y. Yang, L. Lu, and Y.M. Guo,
494	Changes in functional connectivity of ventral anterior cingulate cortex in
495	heroin abusers. Chinese medical journal 123 (2010) 1582-8.
496	[30] L.E. Hong, C.A. Hodgkinson, Y. Yang, H. Sampath, T.J. Ross, B. Buchholz, B.J.
497	Salmeron, V. Srivastava, G.K. Thaker, D. Goldman, and E.A. Stein, A genetically
498	modulated, intrinsic cingulate circuit supports human nicotine addiction.
499	Proceedings of the National Academy of Sciences of the United States of
500	America 107 (2010) 13509-14.
501	[31] L.E. Hong, H. Gu, Y. Yang, T.J. Ross, B.J. Salmeron, B. Buchholz, G.K. Thaker, and
502	E.A. Stein, Association of nicotine addiction and nicotine's actions with
503	separate cingulate cortex functional circuits. Archives of general psychiatry
504	66 (2009) 431-41.
505	[32] F. Lin, Y. Zhou, Y. Du, Z. Zhao, L. Qin, J. Xu, and H. Lei, Aberrant corticostriatal
506	functional circuits in adolescents with Internet addiction disorder. Frontiers
507	in human neuroscience 9 (2015) 356.
508	[33] K. Yuan, D. Yu, Y. Bi, Y. Li, Y. Guan, J. Liu, Y. Zhang, W. Qin, X. Lu, and J. Tian, The
509	implication of frontostriatal circuits in young smokers: A resting-state study.
510	Human brain mapping (2016).
511	[34] L.F. Fontenelle, B.J. Harrison, J. Pujol, C.G. Davey, A. Fornito, E. Bora, C. Pantelis,
512	and M. Yucel, Brain functional connectivity during induced sadness in
513	patients with obsessive-compulsive disorder. Journal of psychiatry &
514	neuroscience : JPN 37 (2012) 231-40.
515	[35] N. Ma, Y. Liu, N. Li, C.X. Wang, H. Zhang, X.F. Jiang, H.S. Xu, X.M. Fu, X. Hu, and
516	D.R. Zhang, Addiction related alteration in resting-state brain connectivity.
517	NeuroImage 49 (2010) 738-44.

518	[36] A.J. Jasinska, B.T. Chen, A. Bonci, and E.A. Stein, Dorsal medial prefrontal cortex
519	(MPFC) circuitry in rodent models of cocaine use: implications for drug
520	addiction therapies. Addiction biology 20 (2015) 215-26.
521	[37] A.J. Jasinska, E.A. Stein, J. Kaiser, M.J. Naumer, and Y. Yalachkov, Factors
522	modulating neural reactivity to drug cues in addiction: a survey of human
523	neuroimaging studies. Neuroscience and biobehavioral reviews 38 (2014) 1-
524	16.
525	[38] V. Guadagnin, M. Parazzini, S. Fiocchi, I. Liorni, and P. Ravazzani, Deep
526	Transcranial Magnetic Stimulation: Modeling of Different Coil Configurations.
527	IEEE Trans Biomed Eng 63 (2016) 1543-50.
528	[39] S. Fiocchi, M. Longhi, P. Ravazzani, Y. Roth, A. Zangen, and M. Parazzini,
529	Modelling of the Electric Field Distribution in Deep Transcranial Magnetic
530	Stimulation in the Adolescence, in the Adulthood, and in the Old Age.
531	Computational and mathematical methods in medicine 2016 (2016)
532	9039613.
533	[40] Y. Roth, A. Amir, Y. Levkovitz, and A. Zangen, Three-dimensional distribution of
534	the electric field induced in the brain by transcranial magnetic stimulation
535	using figure-8 and deep H-coils. Journal of clinical neurophysiology : official
536	publication of the American Electroencephalographic Society 24 (2007) 31-8.
537	[41] K.A. Hadland, M.F. Rushworth, R.E. Passingham, M. Jahanshahi, and J.C.
538	Rothwell, Interference with performance of a response selection task that
539	has no working memory component: an rTMS comparison of the dorsolateral
540	prefrontal and medial frontal cortex. J Cogn Neurosci 13 (2001) 1097-108.
541	[42] M.F. Rushworth, K.A. Hadland, T. Paus, and P.K. Sipila, Role of the human medial
542	frontal cortex in task switching: a combined fMRI and TMS study. J
543	Neurophysiol 87 (2002) 2577-92.
544	[43] Y. Levkovitz, Y. Roth, E.V. Harel, Y. Braw, A. Sheer, and A. Zangen, A randomized
545	controlled feasibility and safety study of deep transcranial magnetic
546	stimulation. Clinical neurophysiology : official journal of the International
547	Federation of Clinical Neurophysiology 118 (2007) 2730-44.
548	[44] S. Rossi, M. Hallett, P.M. Rossini, A. Pascual-Leone, and T.M.S.C.G. Safety of,
549	Safety, ethical considerations, and application guidelines for the use of
550	transcranial magnetic stimulation in clinical practice and research. Clinical
551	neurophysiology : official journal of the International Federation of Clinical
552	Neurophysiology 120 (2009) 2008-39.
553	[45] P. Kundu, N.D. Brenowitz, V. Voon, Y. Worbe, P.E. Vertes, S.J. Inati, Z.S. Saad, P.A.
554	Bandettini, and E.T. Bullmore, Integrated strategy for improving functional
555	connectivity mapping using multiecho fMRI. Proceedings of the National
556	Academy of Sciences of the United States of America 110 (2013) 16187-
557	16192.
558	[46] P. Kundu, S.J. Inati, J.W. Evans, W.M. Luh, and P.A. Bandettini, Differentiating
559	BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.
560	NeuroImage 60 (2012) 1759-70.
560	
561	[47] S. Whitfield-Gabrieli, and A. Nieto-Castanon, Conn: a functional connectivity
562	toolbox for correlated and anticorrelated brain networks. Brain connectivity
202	2 (2012) 125-41.

564	[48] A.J. Brett M, Valabregue R, Poline JB, Region of interest analysis using an SPM
565	toolbox [abstract]. Presented at the 8th International Conferance on
566	Functional Mapping of the Human Brain Available on CD-ROM in
567	NeuroImage, Vol 16, No 2, abstract 497 (2002).
568	[49] G.K. Murray, P.R. Corlett, L. Clark, M. Pessiglione, A.D. Blackwell, G. Honey, P.B.
569	Jones, E.T. Bullmore, T.W. Robbins, and P.C. Fletcher, Substantia
570	nigra/ventral tegmental reward prediction error disruption in psychosis.
571	Molecular psychiatry 13 (2008) 239, 267-76.
572	[50] D. Martinez, M. Slifstein, A. Broft, O. Mawlawi, D.R. Hwang, Y. Huang, T. Cooper,
573	L. Kegeles, E. Zarahn, A. Abi-Dargham, S.N. Haber, and M. Laruelle, Imaging
574	human mesolimbic dopamine transmission with positron emission
575	tomography. Part II: amphetamine-induced dopamine release in the
576	functional subdivisions of the striatum. Journal of cerebral blood flow and
577	metabolism : official journal of the International Society of Cerebral Blood
578	Flow and Metabolism 23 (2003) 285-300.
579	[51] C. Rosazza, L. Minati, F. Ghielmetti, M.L. Mandelli, and M.G. Bruzzone, Functional
580	connectivity during resting-state functional MR imaging: study of the
581	correspondence between independent component analysis and region-of-
582	interest-based methods. AJNR. American journal of neuroradiology 33
583	(2012) 180-7.
584	[52] C.F. Beckmann, and S.M. Smith, Probabilistic independent component analysis
585	for functional magnetic resonance imaging. IEEE transactions on medical
586	imaging 23 (2004) 137-52.
587	[53] V. Kiviniemi, J.H. Kantola, J. Jauhiainen, A. Hyvarinen, and O. Tervonen,
588	Independent component analysis of nondeterministic fMRI signal sources.
589	NeuroImage 19 (2003) 253-60.
590	[54] X.N. Zuo, C. Kelly, J.S. Adelstein, D.F. Klein, F.X. Castellanos, and M.P. Milham,
591	Reliable intrinsic connectivity networks: test-retest evaluation using ICA and
592	dual regression approach. NeuroImage 49 (2010) 2163-77.
593	[55] T.E. Nichols, and A.P. Holmes, Nonparametric permutation tests for functional
594	neuroimaging: a primer with examples. Human brain mapping 15 (2002) 1-
595	25.
596	[56] I. Obeso, S.S. Cho, F. Antonelli, S. Houle, M. Jahanshahi, J.H. Ko, and A.P. Strafella,
597	Stimulation of the pre-SMA influences cerebral blood flow in frontal areas
598	involved with inhibitory control of action. Brain stimulation 6 (2013) 769-76.
599	[57] M.D. Fox, R.L. Buckner, M.P. White, M.D. Greicius, and A. Pascual-Leone, Efficacy
600	of transcranial magnetic stimulation targets for depression is related to
601	intrinsic functional connectivity with the subgenual cingulate. Biological
602	psychiatry 72 (2012) 595-603.
603	[58] A. Nordenskjold, B. Martensson, A. Pettersson, E. Heintz, and M. Landen, Effects
604	of Hesel-coil deep transcranial magnetic stimulation for depression - a
605	systematic review. Nordic journal of psychiatry (2016) 1-6.
606	[59] K.K. Kedzior, L. Gierke, H.M. Gellersen, and M.T. Berlim, Cognitive functioning
607	and deep transcranial magnetic stimulation (DTMS) in major psychiatric
608	disorders: A systematic review. Journal of psychiatric research 75 (2016)
609	107-15.

610	[60] M. Ceccanti, M. Inghilleri, M.L. Attilia, R. Raccah, M. Fiore, A. Zangen, and M.
611	Ceccanti, Deep TMS on alcoholics: effects on cortisolemia and dopamine
612	pathway modulation. A pilot study. Canadian journal of physiology and
613	pharmacology 93 (2015) 283-90.
614	[61] L. Dinur-Klein, P. Dannon, A. Hadar, O. Rosenberg, Y. Roth, M. Kotler, and A.
615	Zangen, Smoking cessation induced by deep repetitive transcranial magnetic
616	stimulation of the prefrontal and insular cortices: a prospective, randomized
617	controlled trial. Biological psychiatry 76 (2014) 742-9.
618	[62] F. Spagnolo, M.A. Volonte, M. Fichera, R. Chieffo, E. Houdayer, M. Bianco, E.
619	Coppi, A. Nuara, L. Straffi, G. Di Maggio, L. Ferrari, D. Dalla Libera, S. Velikova,
620	G. Comi, A. Zangen, and L. Leocani, Excitatory deep repetitive transcranial
621	magnetic stimulation with H-coil as add-on treatment of motor symptoms in
622	Parkinson's disease: an open label, pilot study. Brain stimulation 7 (2014)
623	297-300.
624	[63] G. Kranz, E.A. Shamim, P.T. Lin, G.S. Kranz, and M. Hallett, Transcranial magnetic
625	brain stimulation modulates blepharospasm: a randomized controlled study.
626	Neurology 75 (2010) 1465-71.
627	[64] C. Rapinesi, A. Del Casale, P. Scatena, G.D. Kotzalidis, S. Di Pietro, V.R. Ferri, F.S.
628	Bersani, R. Brugnoli, R.N. Raccah, A. Zangen, S. Ferracuti, F. Orzi, P. Girardi,
629	and G. Sette, Add-on deep Transcranial Magnetic Stimulation (dTMS) for the
630	treatment of chronic migraine: A preliminary study. Neuroscience letters 623
631	(2016) 7-12.
632	[65] P.S. Tofts, The distribution of induced currents in magnetic stimulation of the
633	nervous system. Physics in medicine and biology 35 (1990) 1119-28.
634	[66] M.G. Stokes, C.D. Chambers, I.C. Gould, T.R. Henderson, N.E. Janko, N.B. Allen,
635	and J.B. Mattingley, Simple metric for scaling motor threshold based on scalp-
636	cortex distance: application to studies using transcranial magnetic
637	stimulation. Journal of neurophysiology 94 (2005) 4520-7.
638	[67] P. Trillenberg, S. Bremer, S. Oung, C. Erdmann, A. Schweikard, and L. Richter,
639	Variation of stimulation intensity in transcranial magnetic stimulation with
640	depth. Journal of neuroscience methods 211 (2012) 185-90.
641	[68] J.P. Brasil-Neto, L.G. Cohen, M. Panizza, J. Nilsson, B.J. Roth, and M. Hallett,
642	Optimal focal transcranial magnetic activation of the human motor cortex:
643	effects of coil orientation, shape of the induced current pulse, and stimulus
644	intensity. Journal of clinical neurophysiology : official publication of the
645	American Electroencephalographic Society 9 (1992) 132-6.
646	[69] P.T. Fox, S. Narayana, N. Tandon, H. Sandoval, S.P. Fox, P. Kochunov, and J.L.
647	Lancaster, Column-based model of electric field excitation of cerebral cortex.
648	Human brain mapping 22 (2004) 1-14.
649	[70] D. Balslev, W. Braet, C. McAllister, and R.C. Miall, Inter-individual variability in
650	optimal current direction for transcranial magnetic stimulation of the motor
651	cortex. Journal of neuroscience methods 162 (2007) 309-13.
652	[71] A. Opitz, M. Windhoff, R.M. Heidemann, R. Turner, and A. Thielscher, How the
653	brain tissue shapes the electric field induced by transcranial magnetic
654	stimulation. NeuroImage 58 (2011) 849-59.

655	[72] A. Thielscher, A. Opitz, and M. Windhoff, Impact of the gyral geometry on the
656	electric field induced by transcranial magnetic stimulation. NeuroImage 54
657	(2011) 234-43.
658	[73] J.D. Bijsterbosch, A.T. Barker, K.H. Lee, and P.W. Woodruff, Where does
659	transcranial magnetic stimulation (TMS) stimulate? Modelling of induced
660	field maps for some common cortical and cerebellar targets. Medical &
661	biological engineering & computing 50 (2012) 671-81.
662	[74] A.M. Janssen, T.F. Oostendorp, and D.F. Stegeman, The coil orientation
663	dependency of the electric field induced by TMS for M1 and other brain
664	areas. Journal of neuroengineering and rehabilitation 12 (2015) 47.
665	[75] A.M. Janssen, S.M. Rampersad, F. Lucka, B. Lanfer, S. Lew, U. Aydin, C.H. Wolters,
666	D.F. Stegeman, and T.F. Oostendorp, The influence of sulcus width on
667	simulated electric fields induced by transcranial magnetic stimulation.
668	Physics in medicine and biology 58 (2013) 4881-96.
669	[76] A.M. Janssen, T.F. Oostendorp, and D.F. Stegeman, The effect of local anatomy
670	on the electric field induced by TMS: evaluation at 14 different target sites.
671	Medical & biological engineering & computing 52 (2014) 873-83.
672	[77] M. Lu, and S. Ueno, Calculating the induced electromagnetic fields in real human
673	head by deep transcranial magnetic stimulation. Conference proceedings :
674	Annual International Conference of the IEEE Engineering in Medicine and
675	Biology Society. IEEE Engineering in Medicine and Biology Society. Annual
676	Conference 2013 (2013) 795-8.
677	[78] Z.D. Deng, S.H. Lisanby, and A.V. Peterchev, Coil design considerations for deep
678	transcranial magnetic stimulation. Clinical neurophysiology : official journal
679	of the International Federation of Clinical Neurophysiology 125 (2014) 1202-
680	12.
681	[79] Z.D. Deng, S.H. Lisanby, and A.V. Peterchev, Electric field depth-focality tradeoff
682	in transcranial magnetic stimulation: simulation comparison of 50 coil
683	designs. Brain stimulation 6 (2013) 1-13.
684	[80] T. Kammer, S. Beck, M. Erb, and W. Grodd, The influence of current direction on
685	phosphene thresholds evoked by transcranial magnetic stimulation. Clinical
686	neurophysiology : official journal of the International Federation of Clinical
687	Neurophysiology 112 (2001) 2015-21.
688	[81] S. Bestmann, J. Baudewig, H.R. Siebner, J.C. Rothwell, and J. Frahm, BOLD MRI
689	responses to repetitive TMS over human dorsal premotor cortex.
690	NeuroImage 28 (2005) 22-9.
691	[82] S. Bestmann, J. Baudewig, H.R. Siebner, J.C. Rothwell, and J. Frahm, Functional
692	MRI of the immediate impact of transcranial magnetic stimulation on cortical
693	and subcortical motor circuits. The European journal of neuroscience 19
694	(2004) 1950-62.
695	[83] S. Bestmann, C.C. Ruff, F. Blankenburg, N. Weiskopf, J. Driver, and J.C. Rothwell,
696	Mapping causal interregional influences with concurrent TMS-fMRI.
697	Experimental brain research 191 (2008) 383-402.
698	[84] A.P. Strafella, J.H. Ko, J. Grant, M. Fraraccio, and O. Monchi, Corticostriatal
699 699	functional interactions in Parkinson's disease: a rTMS/[11C]raclopride PET
700	study. The European journal of neuroscience 22 (2005) 2946-52.
,00	study. The Buropean journar of neuroscience 22 (2005) 2740 52.

701	[85] A.T. Sack, A. Kohler, D.E. Linden, R. Goebel, and L. Muckli, The temporal
702	characteristics of motion processing in hMT/V5+: combining fMRI and
703	neuronavigated TMS. NeuroImage 29 (2006) 1326-35.
704	[86] H.R. Siebner, T.O. Bergmann, S. Bestmann, M. Massimini, H. Johansen-Berg, H.
705	Mochizuki, D.E. Bohning, E.D. Boorman, S. Groppa, C. Miniussi, A. Pascual-
706	Leone, R. Huber, P.C. Taylor, R.J. Ilmoniemi, L. De Gennaro, A.P. Strafella, S.
707	Kahkonen, S. Kloppel, G.B. Frisoni, M.S. George, M. Hallett, S.A. Brandt, M.F.
708	Rushworth, U. Ziemann, J.C. Rothwell, N. Ward, L.G. Cohen, J. Baudewig, T.
709	Paus, Y. Ugawa, and P.M. Rossini, Consensus paper: combining transcranial
710	stimulation with neuroimaging. Brain stimulation 2 (2009) 58-80.
711	[87] A.M. Speer, B.E. Benson, T.K. Kimbrell, E.M. Wassermann, M.W. Willis, P.
712	Herscovitch, and R.M. Post, Opposite effects of high and low frequency rTMS
713	on mood in depressed patients: relationship to baseline cerebral activity on
714	PET. Journal of affective disorders 115 (2009) 386-94.
715	[88] I. Sibon, A.P. Strafella, P. Gravel, J.H. Ko, L. Booij, J.P. Soucy, M. Leyton, M. Diksic,
716	and C. Benkelfat, Acute prefrontal cortex TMS in healthy volunteers: effects
717	on brain 11C-alphaMtrp trapping. NeuroImage 34 (2007) 1658-64.
718	[89] J.H. Ko, O. Monchi, A. Ptito, P. Bloomfield, S. Houle, and A.P. Strafella, Theta burst
719	stimulation-induced inhibition of dorsolateral prefrontal cortex reveals
720	hemispheric asymmetry in striatal dopamine release during a set-shifting
721	task: a TMS-[(11)C]raclopride PET study. The European journal of
722	neuroscience 28 (2008) 2147-55.
723	[90] A.M. Speer, T.A. Kimbrell, E.M. Wassermann, D.R. J, M.W. Willis, P. Herscovitch,
724	and R.M. Post, Opposite effects of high and low frequency rTMS on regional
725	brain activity in depressed patients. Biological psychiatry 48 (2000) 1133-41.
726	[91] R. Chen, J. Classen, C. Gerloff, P. Celnik, E.M. Wassermann, M. Hallett, and L.G.
727	Cohen, Depression of motor cortex excitability by low-frequency transcranial
728	magnetic stimulation. Neurology 48 (1997) 1398-403.
729	[92] E.M. Wassermann, J. Grafman, C. Berry, C. Hollnagel, K. Wild, K. Clark, and M.
730	Hallett, Use and safety of a new repetitive transcranial magnetic stimulator.
731	Electroencephalography and clinical neurophysiology 101 (1996) 412-7.
732	[93] W. Gerschlager, H.R. Siebner, and J.C. Rothwell, Decreased corticospinal
733	excitability after subthreshold 1 Hz rTMS over lateral premotor cortex.
734	Neurology 57 (2001) 449-55.
735	[94] L.H. Strens, A. Oliviero, B.R. Bloem, W. Gerschlager, J.C. Rothwell, and P. Brown,
736	The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and
737	interhemispheric coherence. Clinical neurophysiology : official journal of the
738	International Federation of Clinical Neurophysiology 113 (2002) 1279-85.
739	[95] K. Rubia, Functional brain imaging across development. European child &
740	adolescent psychiatry 22 (2013) 719-31.
741	[96] J.S. Provost, A. Hanganu, and O. Monchi, Neuroimaging studies of the striatum in
742	cognition Part I: healthy individuals. Frontiers in systems neuroscience 9
743	(2015) 140.
744	[97] G. Bush, P. Luu, and M.I. Posner, Cognitive and emotional influences in anterior
745	cingulate cortex. Trends in cognitive sciences 4 (2000) 215-222.

746 747 748 749 750 751 752 753 754 755	 [98] M.M. Botvinick, J.D. Cohen, and C.S. Carter, Conflict monitoring and anterior cingulate cortex: an update. Trends in cognitive sciences 8 (2004) 539-46. [99] C.S. Li, and R. Sinha, Inhibitory control and emotional stress regulation: neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. Neuroscience and biobehavioral reviews 32 (2008) 581-97. [100] C.D. Chambers, H. Garavan, and M.A. Bellgrove, Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience and biobehavioral reviews 33 (2009) 631-46. [101] W. Schultz, P. Dayan, and P.R. Montague, A neural substrate of prediction and reward. Science 275 (1997) 1593-9.
756	[102] L.H. Corbit, J.L. Muir, and B.W. Balleine, The role of the nucleus accumbens in
757	instrumental conditioning: Evidence of a functional dissociation between
758	accumbens core and shell. J Neurosci 21 (2001) 3251-60.
759	[103] M. Pessiglione, B. Seymour, G. Flandin, R.J. Dolan, and C.D. Frith, Dopamine-
760	dependent prediction errors underpin reward-seeking behaviour in humans.
761	Nature 442 (2006) 1042-5.
762	[104] B.J. Harrison, C. Soriano-Mas, J. Pujol, H. Ortiz, M. Lopez-Sola, R. Hernandez-
763	Ribas, J. Deus, P. Alonso, M. Yucel, C. Pantelis, J.M. Menchon, and N. Cardoner,
764	Altered corticostriatal functional connectivity in obsessive-compulsive
765	disorder. Archives of general psychiatry 66 (2009) 1189-200.
766	[105] L. Cocchi, B.J. Harrison, J. Pujol, I.H. Harding, A. Fornito, C. Pantelis, and M.
767	Yucel, Functional alterations of large-scale brain networks related to
768	cognitive control in obsessive-compulsive disorder. Human brain mapping
769	33 (2012) 1089-106.
770	[106] A. Anticevic, S. Hu, S. Zhang, A. Savic, E. Billingslea, S. Wasylink, G. Repovs,
771	M.W. Cole, S. Bednarski, J.H. Krystal, M.H. Bloch, C.S. Li, and C. Pittenger,
772	Global resting-state functional magnetic resonance imaging analysis
773	identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-
774	compulsive disorder. Biological psychiatry 75 (2014) 595-605.
775	[107] R.Z. Goldstein, and N.D. Volkow, Dysfunction of the prefrontal cortex in
776	addiction: neuroimaging findings and clinical implications. Nature reviews.
777	Neuroscience 12 (2011) 652-69.
778	[108] S. Kuhn, and J. Gallinat, Common biology of craving across legal and illegal
779	drugs - a quantitative meta-analysis of cue-reactivity brain response. The
780	European journal of neuroscience 33 (2011) 1318-26.
781	[109] J.L. Abelson, G.C. Curtis, O. Sagher, R.C. Albucher, M. Harrigan, S.F. Taylor, B.
782	Martis, and B. Giordani, Deep brain stimulation for refractory obsessive-
783	compulsive disorder. Biological psychiatry 57 (2005) 510-6.
784	[110] L. Mallet, M. Polosan, N. Jaafari, N. Baup, M.L. Welter, D. Fontaine, S.T. du
785	Montcel, J. Yelnik, I. Chereau, C. Arbus, S. Raoul, B. Aouizerate, P. Damier, S.
786	Chabardes, V. Czernecki, C. Ardouin, M.O. Krebs, E. Bardinet, P. Chaynes, P.
787 700	Burbaud, P. Cornu, P. Derost, T. Bougerol, B. Bataille, V. Mattei, D. Dormont, B.
788 790	Devaux, M. Verin, J.L. Houeto, P. Pollak, A.L. Benabid, Y. Agid, P. Krack, B. Millet, and A. Poliagola, Subthalamia nucleus stimulation in source chaosaive
789 700	Millet, and A. Pelissolo, Subthalamic nucleus stimulation in severe obsessive-
790 701	compulsive disorder. The New England journal of medicine 359 (2008)
791	2121-34.

792	[111] M. Figee, J. Luigjes, R. Smolders, C.E. Valencia-Alfonso, G. van Wingen, B. de
793	Kwaasteniet, M. Mantione, P. Ooms, P. de Koning, N. Vulink, N. Levar, L.
794	Droge, P. van den Munckhof, P.R. Schuurman, A. Nederveen, W. van den
795	Brink, A. Mazaheri, M. Vink, and D. Denys, Deep brain stimulation restores
796	frontostriatal network activity in obsessive-compulsive disorder. Nature
797	neuroscience 16 (2013) 386-7.
798	[112] J.P. O'Reardon, H.B. Solvason, P.G. Janicak, S. Sampson, K.E. Isenberg, Z. Nahas,
799	W.M. McDonald, D. Avery, P.B. Fitzgerald, C. Loo, M.A. Demitrack, M.S. George,
800	and H.A. Sackeim, Efficacy and safety of transcranial magnetic stimulation in
801	the acute treatment of major depression: a multisite randomized controlled
802	trial. Biological psychiatry 62 (2007) 1208-16.
803	[113] P.S. Sachdev, C.K. Loo, P.B. Mitchell, T.F. McFarquhar, and G.S. Malhi, Repetitive
804	transcranial magnetic stimulation for the treatment of obsessive compulsive
805	disorder: a double-blind controlled investigation. Psychological medicine 37
806	(2007) 1645-9.
807	[114] K. Dunlop, B. Woodside, M. Olmsted, P. Colton, P. Giacobbe, and J. Downar,
808	Reductions in Cortico-Striatal Hyperconnectivity Accompany Successful
809	Treatment of Obsessive-Compulsive Disorder with Dorsomedial Prefrontal
810	rTMS. Neuropsychopharmacology : official publication of the American
811	College of Neuropsychopharmacology 41 (2016) 1395-403.
812	[115] A. Mantovani, S.H. Lisanby, F. Pieraccini, M. Ulivelli, P. Castrogiovanni, and S.
813	Rossi, Repetitive transcranial magnetic stimulation (rTMS) in the treatment
814	of obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). The
815	international journal of neuropsychopharmacology / official scientific journal
816	of the Collegium Internationale Neuropsychopharmacologicum (CINP) 9
817	(2006) 95-100.
818	[116] A. Mantovani, H.B. Simpson, B.A. Fallon, S. Rossi, and S.H. Lisanby, Randomized
819	sham-controlled trial of repetitive transcranial magnetic stimulation in
820	treatment-resistant obsessive-compulsive disorder. The international journal
821	of neuropsychopharmacology / official scientific journal of the Collegium
822	Internationale Neuropsychopharmacologicum (CINP) 13 (2010) 217-27.
823	[117] Y. Bloch, S. Arad, and Y. Levkovitz, Deep TMS add-on treatment for intractable
824	Tourette syndrome: A feasibility study. The world journal of biological
825	psychiatry : the official journal of the World Federation of Societies of
826	Biological Psychiatry (2014) 1-5.
827	[118] U. Ziemann, TMS induced plasticity in human cortex. Reviews in the
828	neurosciences 15 (2004) 253-66.
829	[119] V. Di Lazzaro, F. Pilato, M. Dileone, P. Profice, A. Oliviero, P. Mazzone, A. Insola,
830	F. Ranieri, P.A. Tonali, and J.C. Rothwell, Low-frequency repetitive
831	transcranial magnetic stimulation suppresses specific excitatory circuits in
832	the human motor cortex. The Journal of physiology 586 (2008) 4481-7.
833	[120] T. Popa, M. L.S., R. Hunt, Z. Deng, S. Horovitz, K. Mente, H. Shitara, K. Baek, M.
834	Hallett, and V. Voon, Modulation of Resting Connectivity Between the Mesial
835	Frontal Cortex and Basal Ganglia. bioRxiv (2018).
836	

837 Figure Legends

838	Figure 1. Stimulation paradigm. (A) Schematic representation of the movement of the
839	projection of the geometric center of the H7 coil 5 cm in front of the empirically found hot-
840	spot for the left <i>Tibialis anterior</i> muscle [41; 42]. The points represent an ideal (not
841	neuronavigated) center of the interior of the H7 helmet. (B) Estimation of the induced
842	electrical field intensity with distance from the coil for stimulation at 110% of the active
843	motor threshold (AMT) – our intensity of choice, and 120% AMT and 110% resting motor
844	threshold – higher intensities distribution modeled for comparison. The dotted line
845	represents the theoretical intensity of the induced electrical field for AMT. (C) Sagittal
846	section showing the area in the dorso-mesial prefrontal cortex found at an equivalent depth
847	to the <i>Tibialis anterior</i> motor representation.
848	
849	Figure 2. Intrinsic resting state connectivity maps for mesial prefrontal cortex (PFC) and
850	mid cingulate cortex seeds to whole brain in healthy controls. Positive (yellow-red) and
851	negative (green-blue) functional connectivity are displayed. The rectangular insets at y=8
852	highlighting differences in direction of connectivity of the striatum are shown for the mesial
853	PFC (bottom row, left) and mid cingulate (bottom row, right). Coronal images (y-values
854	shown above image) are thresholded at whole brain family wise error corrected p< 0.05 on

a standard MNI template.

856

Figure 3. Effects of repetitive transcranial magnetic stimulation (rTMS) on intrinsic

858 functional connectivity in healthy controls. Functional connectivity is schematically

- 859 illustrated at baseline (i.e. pre-rTMS; top left) and post-rTMS (bottom left); pre- and post-
- 860 rTMS effects on seed-to-seed functional connectivity are shown in the bar graphs. After
- rTMS, functional connectivity between mesial prefrontal cortex (mPFC) and ventral

Popa, Morris et al.

862	striatum (VS), and between mPFC and mid cingulate cortex (MCC) was reduced, while
863	functional connectivity between MCC and VS was increased (the thickness of the arrows
864	correspond to strength, and color to direction: red – positive connectivity, blue – negative
865	connectivity). Error bars are shown as standard error of the mean. $p<0.05$, $p=0.001$
866	
067	Figure 4 Foundational comparising at most had a set of the found of
867	Figure 4. Functional connectivity at rest between different regions of interest explored with
868	independent component analysis pre- and post-rTMS. Three components included
868	independent component analysis pre- and post-rTMS. Three components included
868 869	independent component analysis pre- and post-rTMS. Three components included prominent mesial-frontal cortex (IC00, IC11 and IC38). The insert shows IC11, which

872 significantly decreased post-rTMS. *p<0.05