5 research outputs found

    Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells

    Get PDF
    Common variable immunodeficiency disorder (CVID) is the most common symptomatic primary immunodeficiency in adults, characterized by B-cell abnormalities and inadequate antibody response. CVID patients have considerable autoimmune comorbidity and we therefore hypothesized that genetic susceptibility to CVID may overlap with autoimmune disorders. Here, in the largest genetic study performed in CVID to date, we compare 778 CVID cases with 10, 999 controls across 123, 127 single-nucleotide polymorphisms (SNPs) on the Immunochip. We identify the first non-HLA genome-wide significant risk locus at CLEC16A (rs17806056, P = 2.0 x 10(-9)) and confirm the previously reported human leukocyte antigen (HLA) associations on chromosome 6p21 (rs1049225, P = 4.8 x 10(-16)). Clec16a knockdown (KD) mice showed reduced number of B cells and elevated IgM levels compared with controls, suggesting that CLEC16A may be involved in immune regulatory pathways of relevance to CVID. In conclusion, the CLEC16A associations in CVID represent the first robust evidence of non-HLA associations in this immunodeficiency condition

    Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases

    Get PDF
    Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ(2) meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico-replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases

    Are genetic tests informative in predicting food allergy?

    No full text
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageFood allergy is common among children and adults worldwide. Recent studies have improved our understanding of the genetic mechanism of food allergy and further studies may result in clinical application through genetic testing.Genetic factors are important in the development of food allergy. An increasing number of genes have been associated with food allergy in recent years. These include mutations and genetic variants in the filaggrin gene, the association of human leukocyte antigen DR and DQ regions with food allergy, copy number variation impacting CTNNA3 and RBFOX1, DNA methylation that partially mediates single nucleotide polymorphism association at the HLA-DR and DQ loci, as well as other genes. Several studies have implicated differences in gut microbiota composition in food allergy.With the advance of high-throughput genotyping and sequencing techniques together with improved analytical methods, the contributions of genetic and environmental factors in development of food allergy are being clarified. Yet much remains to be explored and more studies with larger sample sizes, better phenotyping, and improved quality control genomics methods are needed. The ultimate goal is the development of a panel of reliable markers for genetic testing in food allergy to improve overall patient care

    Understanding the genetic and epigenetic basis of common variable immunodeficiency disorder through omics approaches.

    No full text
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageCommon variable immunodeficiency disorder (CVID) is the most frequently encountered symptomatic primary immunodeficiency, characterized by highly heterogeneous immunological features and clinical presentations. As better targeted therapies are importantly needed for CVID, improved understanding of the genetic and epigenetic basis for the development of CVID presents the most promising venue for improvement.Several genomic and epigenomic studies of CVID have recently been carried out on cohorts of sporadic cases of CVID. Using high-throughput array and sequencing technologies, these studies identified several loci associated with the disease. Here, we review the omics approaches used in these studies and resulting discoveries. We also discuss how these findings lead to improved understanding of the molecular basis of CVID and possible future directions to pursue.High-throughput omics approaches have been productive in genetic and epigenetic studies of CVID, leading to the identifications of several significantly associated loci of different variant types, as well as genes and pathways elucidating the shared genetic basis of CVID and autoimmunity. Complex polygenic model of inheritance together with interplay between genetic components and environmental factors may account for the etiology of CVID and various associated comorbidities.The genetic and epigenetic basis of CVID when further translated through functional studies will allow for improved understanding of the CVID etiology and will provide new insights into the development of potential new therapeutic approaches for this devastating condition. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.Kubert Estate family/526626, Institutional Development Fund/ 722594 Center for Applied Genomics

    ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma

    Get PDF
    Abstract Osteosarcoma (OS) remains a dismal malignancy in children and young adults, with poor outcome for metastatic and recurrent disease. Immunotherapies in OS are not as promising as in some other cancer types due to intra-tumor heterogeneity and considerable off-target expression of the potentially targetable proteins. Here we show that chimeric antigen receptor (CAR) T cells could successfully target an isoform of alkaline phosphatase, ALPL-1, which is highly and specifically expressed in primary and metastatic OS. The target recognition element of the second-generation CAR construct is based on two antibodies, previously shown to react against OS. T cells transduced with these CAR constructs mediate efficient and effective cytotoxicity against ALPL-positive cells in in vitro settings and in state-of-the-art in vivo orthotopic models of primary and metastatic OS, without unexpected toxicities against hematopoietic stem cells or healthy tissues. In summary, CAR-T cells targeting ALPL-1 show efficiency and specificity in treating OS in preclinical models, paving the path for clinical translation
    corecore