448 research outputs found
Analysis of Sentinel-1 radiometric stability and quality for land surface applications
International audienceLand monitoring using temporal series of Synthetic Aperture Radar (SAR) images requires radiometrically well calibrated sensors. In this paper, the radiometric stability of the new SAR Sentinel-1A 'S-1A' sensor was first assessed by analyzing temporal variations of the backscattering coefficient (sigma°) returned from invariant targets. Second, the radiometric level of invariant targets was compared from S-1A and Radarsat-2 "RS-2" data. The results show three stable sub-time series of S-1A data. The first (between 1 October 2014 and 19 March 2015) and third (between 25 November 2015 and 1 February 2016) sub-time series have almost the same mean sigma°-values (a difference lower than 0.3 dB). The mean sigma°-value of the second sub-time series (between 19 March 2015 and 25 November 2015) is higher than that of the first and the third sub-time series by roughly 0.9 dB. Moreover, our results show that the stability of each sub-time series is better than 0.48 dB. In addition, the results show that S-1A images of the first and third sub-time series appear to be well calibrated in comparison to RS-2 data, with a difference between S-1A and RS-2 lower than 0.3 dB. However, the S-1A images of the second sub-time series have sigma°-values that are higher than those from RS-2 by roughly 1 dB
Spin dependent transport of ``nonmagnetic metal/zigzag nanotube encapsulating magnetic atoms/nonmagnetic metal'' junctions
Towards a novel magnetoresistance (MR) device with a carbon nanotube, we
propose ``nonmagnetic metal/zigzag nanotube encapsulating magnetic
atoms/nonmagnetic metal'' junctions. We theoretically investigate how
spin-polarized edges of the nanotube and the encapsulated magnetic atoms
influence on transport. When the on-site Coulomb energy divided by the
magnitude of transfer integral, , is larger than 0.8, large MR effect
due to the direction of spins of magnetic atoms, which has the magnitude of the
MR ratio of about 100%, appears reflecting such spin-polarized edges.Comment: 4 pages, 3 figures, accepted for publication in Synth. Metal
Size-dependent alternation of magnetoresistive properties in atomic chains
Cataloged from PDF version of article.Spin-polarized electronic and transport properties of carbon atomic chains are investigated when they are capped with magnetic transition-metal (TM) atoms like Cr or Co. The magnetic ground state of the TM-C-n-TM chains alternates between the ferromagnetic (F) and antiferromagnetic (AF) spin configurations as a function of n. In view of the nanoscale spintronic device applications the desirable AF state is obtained for only even-n chains with Cr; conversely only odd-n chains with Co have AF ground states. When connected to appropriate metallic electrodes these atomic chains display a strong spin-valve effect. Analysis of structural, electronic, and magnetic properties of these atomic chains, as well as the indirect exchange coupling of the TM atoms through non-magnetic carbon atoms are presented. (c) 2006 American Institute of Physics
Theoretical study of Ga-based nanowires and the interaction of Ga with single-wall carbon nanotubes
Gallium displays physical properties which can make it a potential element to
produce metallic nanowires and high-conducting interconnects in
nanoelectronics. Using first-principles pseudopotential plane method we showed
that Ga can form stable metallic linear and zigzag monatomic chain structures.
The interaction between individual Ga atom and single-wall carbon nanotube
(SWNT) leads to a chemisorption bond involving charge transfer. Doping of SWNT
with Ga atom gives rise to donor states. Owing to a significant interaction
between individual Ga atom and SWNT, continuous Ga coverage of the tube can be
achieved. Ga nanowires produced by the coating of carbon nanotube templates are
found to be stable and high conducting.Comment: 8 pages, 8 figure
Quantum heat transfer through an atomic wire
We studied the phononic heat transfer through an atomic dielectric wire with
both infinite and finite lengths by using a model Hamiltonian approach. At low
temperature under ballistic transport, the thermal conductance contributed by
each phonon branch of a uniform and harmonic chain cannot exceed the well-known
value which depends linearly on temperature but is material independent. We
predict that this ballistic thermal conductance will exhibit stepwise behavior
as a function of temperature. By performing numerical calculations on a more
realistic system, where a small atomic chain is placed between two reservoirs,
we also found resonance modes, which should also lead to the stepwise behavior
in the thermal conductance.Comment: 14 pages, 2 separate figure
Multiple Functionality in Nanotube Transistors
Calculations of quantum transport in a carbon nanotube transistor show that
such a device offers unique functionality. It can operate as a ballistic
field-effect transistor, with excellent characteristics even when scaled to 10
nm dimensions. At larger gate voltages, channel inversion leads to resonant
tunneling through an electrostatically defined nanoscale quantum dot. Thus the
transistor becomes a gated resonant tunelling device, with negative
differential resistance at a tunable threshold. For the dimensions considered
here, the device operates in the Coulomb blockade regime, even at room
temperature.Comment: To appear in Phys. Rev. Let
Magnetoresistance Effect in Spin-Polarized Junctions of Ferromagnetically Contacting Multiple Conductive Paths: Applications to Atomic Wires and Carbon Nanotubes
For spin-polarized junctions of ferromagnetically contacting multiple
conductive paths, such as ferromagnet (FM)/atomic wires/FM and FM/carbon
nanotubes/FM junctions, we theoretically investigate spin-dependent transport
to elucidate the intrinsic relation between the number of paths and conduction,
and to enhance the magnetoresistance (MR) ratio. When many paths are randomly
located between the two FMs, electronic wave interference between the FMs
appears, and then the MR ratio increases with increasing number of paths.
Furthermore, at each number of paths, the MR ratio for carbon nanotubes becomes
larger than that for atomic wires, reflecting the characteristic shape of
points in contact with the FM.Comment: 7 pages, 3 figures, accepted for publication in Phys. Rev.
Quantum transport through a DNA wire in a dissipative environment
Electronic transport through DNA wires in the presence of a strong
dissipative environment is investigated. We show that new bath-induced
electronic states are formed within the bandgap. These states show up in the
linear conductance spectrum as a temperature dependent background and lead to a
crossover from tunneling to thermal activated behavior with increasing
temperature. Depending on the strength of the electron-bath coupling, the
conductance at the Fermi level can show a weak exponential or even an algebraic
length dependence. Our results suggest a new environmental-induced transport
mechanism. This might be relevant for the understanding of molecular conduction
experiments in liquid solution, like those recently performed on poly(GC)
oligomers in a water buffer (B. Xu et al., Nano Lett 4, 1105 (2004)).Comment: 5 pages, 3 figure
Structure of aluminum atomic chains
First-principles density functional calculations reveal that aluminum can
form planar chains in zigzag and ladder structures. The most stable one has
equilateral triangular geometry with four nearest neighbors; the other stable
zigzag structure has wide bond angle and allows for two nearest neighbors. An
intermediary structure has the ladder geometry and is formed by two strands.
All these planar geometries are, however, more favored energetically than the
linear chain. We found that by going from bulk to a chain the character of
bonding changes and acquires directionality. The conductance of zigzag and
linear chains is 4e^2/h under ideal ballistic conditions.Comment: modified detailed version, one new structure added, 4 figures,
modified figure1, 1 tabl
Giant magnetoresistance of multiwall carbon nanotubes: modeling the tube/ferromagnetic-electrode burying contact
We report on the giant magnetoresistance (GMR) of multiwall carbon nanotubes
with ultra small diameters. In particular, we consider the effect of the
inter-wall interactions and the lead/nanotube coupling. Comparative studies
have been performed to show that in the case when all walls are well coupled to
the electrodes, the so-called inverse GMR can appear. The tendency towards a
negative GMR depends on the inter-wall interaction and on the nanotube le ngth.
If, however, the inner nanotubes are out of contact with one of the electrodes,
the GMR remains positive even for relatively strong inter-wall interactions
regardless of the outer nanotube length. These results shed additional light on
recently reported experimental data, where an inverse GMR was found in some
multiwall carbon nanotube samples.Comment: 5 pages, 5 figure
- …
