448 research outputs found

    Analysis of Sentinel-1 radiometric stability and quality for land surface applications

    Get PDF
    International audienceLand monitoring using temporal series of Synthetic Aperture Radar (SAR) images requires radiometrically well calibrated sensors. In this paper, the radiometric stability of the new SAR Sentinel-1A 'S-1A' sensor was first assessed by analyzing temporal variations of the backscattering coefficient (sigma°) returned from invariant targets. Second, the radiometric level of invariant targets was compared from S-1A and Radarsat-2 "RS-2" data. The results show three stable sub-time series of S-1A data. The first (between 1 October 2014 and 19 March 2015) and third (between 25 November 2015 and 1 February 2016) sub-time series have almost the same mean sigma°-values (a difference lower than 0.3 dB). The mean sigma°-value of the second sub-time series (between 19 March 2015 and 25 November 2015) is higher than that of the first and the third sub-time series by roughly 0.9 dB. Moreover, our results show that the stability of each sub-time series is better than 0.48 dB. In addition, the results show that S-1A images of the first and third sub-time series appear to be well calibrated in comparison to RS-2 data, with a difference between S-1A and RS-2 lower than 0.3 dB. However, the S-1A images of the second sub-time series have sigma°-values that are higher than those from RS-2 by roughly 1 dB

    Spin dependent transport of ``nonmagnetic metal/zigzag nanotube encapsulating magnetic atoms/nonmagnetic metal'' junctions

    Full text link
    Towards a novel magnetoresistance (MR) device with a carbon nanotube, we propose ``nonmagnetic metal/zigzag nanotube encapsulating magnetic atoms/nonmagnetic metal'' junctions. We theoretically investigate how spin-polarized edges of the nanotube and the encapsulated magnetic atoms influence on transport. When the on-site Coulomb energy divided by the magnitude of transfer integral, U/tU/|t|, is larger than 0.8, large MR effect due to the direction of spins of magnetic atoms, which has the magnitude of the MR ratio of about 100%, appears reflecting such spin-polarized edges.Comment: 4 pages, 3 figures, accepted for publication in Synth. Metal

    Size-dependent alternation of magnetoresistive properties in atomic chains

    Get PDF
    Cataloged from PDF version of article.Spin-polarized electronic and transport properties of carbon atomic chains are investigated when they are capped with magnetic transition-metal (TM) atoms like Cr or Co. The magnetic ground state of the TM-C-n-TM chains alternates between the ferromagnetic (F) and antiferromagnetic (AF) spin configurations as a function of n. In view of the nanoscale spintronic device applications the desirable AF state is obtained for only even-n chains with Cr; conversely only odd-n chains with Co have AF ground states. When connected to appropriate metallic electrodes these atomic chains display a strong spin-valve effect. Analysis of structural, electronic, and magnetic properties of these atomic chains, as well as the indirect exchange coupling of the TM atoms through non-magnetic carbon atoms are presented. (c) 2006 American Institute of Physics

    Theoretical study of Ga-based nanowires and the interaction of Ga with single-wall carbon nanotubes

    Get PDF
    Gallium displays physical properties which can make it a potential element to produce metallic nanowires and high-conducting interconnects in nanoelectronics. Using first-principles pseudopotential plane method we showed that Ga can form stable metallic linear and zigzag monatomic chain structures. The interaction between individual Ga atom and single-wall carbon nanotube (SWNT) leads to a chemisorption bond involving charge transfer. Doping of SWNT with Ga atom gives rise to donor states. Owing to a significant interaction between individual Ga atom and SWNT, continuous Ga coverage of the tube can be achieved. Ga nanowires produced by the coating of carbon nanotube templates are found to be stable and high conducting.Comment: 8 pages, 8 figure

    Quantum heat transfer through an atomic wire

    Get PDF
    We studied the phononic heat transfer through an atomic dielectric wire with both infinite and finite lengths by using a model Hamiltonian approach. At low temperature under ballistic transport, the thermal conductance contributed by each phonon branch of a uniform and harmonic chain cannot exceed the well-known value which depends linearly on temperature but is material independent. We predict that this ballistic thermal conductance will exhibit stepwise behavior as a function of temperature. By performing numerical calculations on a more realistic system, where a small atomic chain is placed between two reservoirs, we also found resonance modes, which should also lead to the stepwise behavior in the thermal conductance.Comment: 14 pages, 2 separate figure

    Multiple Functionality in Nanotube Transistors

    Full text link
    Calculations of quantum transport in a carbon nanotube transistor show that such a device offers unique functionality. It can operate as a ballistic field-effect transistor, with excellent characteristics even when scaled to 10 nm dimensions. At larger gate voltages, channel inversion leads to resonant tunneling through an electrostatically defined nanoscale quantum dot. Thus the transistor becomes a gated resonant tunelling device, with negative differential resistance at a tunable threshold. For the dimensions considered here, the device operates in the Coulomb blockade regime, even at room temperature.Comment: To appear in Phys. Rev. Let

    Magnetoresistance Effect in Spin-Polarized Junctions of Ferromagnetically Contacting Multiple Conductive Paths: Applications to Atomic Wires and Carbon Nanotubes

    Full text link
    For spin-polarized junctions of ferromagnetically contacting multiple conductive paths, such as ferromagnet (FM)/atomic wires/FM and FM/carbon nanotubes/FM junctions, we theoretically investigate spin-dependent transport to elucidate the intrinsic relation between the number of paths and conduction, and to enhance the magnetoresistance (MR) ratio. When many paths are randomly located between the two FMs, electronic wave interference between the FMs appears, and then the MR ratio increases with increasing number of paths. Furthermore, at each number of paths, the MR ratio for carbon nanotubes becomes larger than that for atomic wires, reflecting the characteristic shape of points in contact with the FM.Comment: 7 pages, 3 figures, accepted for publication in Phys. Rev.

    Quantum transport through a DNA wire in a dissipative environment

    Get PDF
    Electronic transport through DNA wires in the presence of a strong dissipative environment is investigated. We show that new bath-induced electronic states are formed within the bandgap. These states show up in the linear conductance spectrum as a temperature dependent background and lead to a crossover from tunneling to thermal activated behavior with increasing temperature. Depending on the strength of the electron-bath coupling, the conductance at the Fermi level can show a weak exponential or even an algebraic length dependence. Our results suggest a new environmental-induced transport mechanism. This might be relevant for the understanding of molecular conduction experiments in liquid solution, like those recently performed on poly(GC) oligomers in a water buffer (B. Xu et al., Nano Lett 4, 1105 (2004)).Comment: 5 pages, 3 figure

    Structure of aluminum atomic chains

    Get PDF
    First-principles density functional calculations reveal that aluminum can form planar chains in zigzag and ladder structures. The most stable one has equilateral triangular geometry with four nearest neighbors; the other stable zigzag structure has wide bond angle and allows for two nearest neighbors. An intermediary structure has the ladder geometry and is formed by two strands. All these planar geometries are, however, more favored energetically than the linear chain. We found that by going from bulk to a chain the character of bonding changes and acquires directionality. The conductance of zigzag and linear chains is 4e^2/h under ideal ballistic conditions.Comment: modified detailed version, one new structure added, 4 figures, modified figure1, 1 tabl

    Giant magnetoresistance of multiwall carbon nanotubes: modeling the tube/ferromagnetic-electrode burying contact

    Full text link
    We report on the giant magnetoresistance (GMR) of multiwall carbon nanotubes with ultra small diameters. In particular, we consider the effect of the inter-wall interactions and the lead/nanotube coupling. Comparative studies have been performed to show that in the case when all walls are well coupled to the electrodes, the so-called inverse GMR can appear. The tendency towards a negative GMR depends on the inter-wall interaction and on the nanotube le ngth. If, however, the inner nanotubes are out of contact with one of the electrodes, the GMR remains positive even for relatively strong inter-wall interactions regardless of the outer nanotube length. These results shed additional light on recently reported experimental data, where an inverse GMR was found in some multiwall carbon nanotube samples.Comment: 5 pages, 5 figure
    corecore