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1. Introduction

Consider definitions of classical Volterra and related functions as stated in [1, p. 217]:

oo Xt
0 xt+0t
U(X,Ol) == mdt, (1.2)
wx, B) = det (1.3)
’ o N+DI'B+1) ’
) xt+o g
B = | rerarr@rn® (14)

where o, 8 > —1 and x > 0, but some particular notations are usually adopted in special cases
a=p8=0 vx)=ux00)
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a#0,8=0 v(x,a) =0 )
a=0p8#0 puxp)=unxp.0). (15)
Volterra functions were introduced by Vito Volterra in 1916. Its theory was thoroughly developed by Mhitar M.
Dzhrbashyan, his own and his coathors results were summed up in the monograph [2] in 1966. In this book many im-

portant results on Volterra functions, known and new, were gathered and introduced. Many results on Volterra functions
were also gathered in two books of Apelblat [3,4], for important application cf. also [7].

In this paper we define the new class of generalized Volterra functions V[,’f;f [.] with p numerator parameters oy, ..., op
and q denominator parameters fBq,..., g, by
apl (b1.B1)..... (bg.By) | | _yes| (BaB|, | _ [~ [ TAit+a) xeef (1.6)
p.4q ((11,A]),.,.,(ap,Ap) pq (ap,Ap) 0 ?:1F(Bjt+bj) F(,B-l—l) ’
where
(oc,,B > 1, x>0,A.B; >0, ai.b; >0, (i:l,...,p;j:l,...,q)).
For the special case x = 1/e, B = s — 1 the function (1.6) up to the constant reduces to the function
_ < T1P.. T'(Ait +q;
Vg&ﬂ[(ﬂq’gq) D, Si| _ 4:1 (A i) e~ Pt 514t (1.7)
(ap, Ap) 0 l'ljzll“(Bjterj)

which is interesting and important as a simultaneous expression for Laplace and Mellin transforms for the gamma-function
ratio.

The paper is organized as follows. In Section 2 we prove several integral representations for the new class of the gen-
eralized Volterra function via Fox-Wright functions and the Laplace transform. Various new facts regarding the generalized
Volterra function are proved, including complete monotonicity property, log-convexity in upper parameters, and a Turdn
type inequality. In Section 3 closed-form integral expressions are derived for a family of convergent Mathieu-type series and
its alternating variant when terms contain the generalized Volterra function.

2. Integral representations for the generalized Volterra functions

To formulate our first main result we need a particular case of Fox’s H-function defined by
Brbo) o) — HPY (Ba:bo) 1 1P=1 CAs+a)
(A1.01)....(Ap.p) ap

Ay ) 20T s g=lF(Bks+bj)
where A;, B; >0 and g;, b; are real. The contour £ can be either the left loop £_ starting at —oo + io and ending at —oo + if
for some o <0< B such that all poles of the integrand lie inside the loop, or the right loop £, starting oo + i at and
ending oo +if and leaving all poles on the left, or the vertical line £;., %(z) = c, traversed upward and leaving all poles of
the integrand on the left. Denote the rightmost pole of the integrand by y:

y = — min (g;/A;).
1<i<p

ds, (2.8)

Let

p A q B q p p—gq
p=|T1A" J(T1B7 ) m=2_bi=> et =~ (2.9)
i=1 j=1 j=1 i=1

Existence conditions of Fox’s H-function under each choice of the contour £ have been thoroughly considered in the book
[16]. Let z> 0 and under conditions:

p q
ZAj = ZB;', p=1
i1 =

we get that the function Hg’;g(z) exists by means of [16, Theorem 1.1], if we choose £ =L, or £ = £;. under the addi-
tional restriction > 1. Only the second choice of the contour ensures the existence of the Mellin transform of Hg'g (2), see
[16, Theorem 2.2]. In [11, Theorem 6], the authors extend the condition @ > 1 to @ > 0 and proved that the function H,;'g (2)
is of compact support.

Theorem 1. Let o, § > —1. Assume that p© >0, and 25.’:1 Aj= ZL] By. Then the following integral representation for the
generalized Volterra function (1.6)

P
x|=1{ HPOt
] fo q~p<

a,B | (ap.Ap)
Vp‘q [(ﬂquq)

(quﬂq)> X dt (210)

(Ap.ap) W 7
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holds true for all x<(0, 1).

Proof. By using the Mellin transform for the Fox’s H-function Hg_’g (2) [11, Theorem 6]:

i, M+ o) /p (2" e ae, woy >
Z:1 F(Bkt + ﬂk) 0 P (Ap,ctp)
we obtain
vah |:(a,,.Ap) X] _ 00 1P=1 CAit +a;) xt+oth
p.9 | (Bg.Bg) 0 ?=1 F(B]t + b]) F(IB =+ 1)

(Bg.Bq) xt-H)tZt—ltﬁ
) dtdz

o rp
= HP( z —_—
»/(; ~/0 P < (Ap.ctp) F(ﬁ + 1)
P (qu,Bq) o] xolz—l
= | HP(:z (/ xtzftﬂdt>7dz
/o P ( (Ap.ap>> 0 rp+1)
Y (qu,Bq) 0 Xotz—l
= | HPO (z ) (/ tﬂe’fdt> dz
/o P\ apan ) \Jo (B +1)log?! (1/(x2))

p o) oy
=/weqyyza
0 Ay ) Tog?t! (1/(x2))

This completes the proof of Theorem 1. O

Remark 1. The special case for which the H-function reduces to the Meijer G-function is when Ay = ---

By =A, A> 0. In this case,

A.b b
Hm.n Z‘( ?) — 1Gm.n Z]/A 4
q.p (Aay) A Pa ap

where ap = (ay,...,ap) and bg = (by, ..., bq). So we get

1
V(Xﬁ |:(Clp.A) x] =‘/(; Ggg(tl/A

p.p | (Bp.A)
for all xe(0, 1) and «, 8 > —1.

bv) xodt
a ) AtlogP (1/(tx))’

(2.11)

(2.12)

(2.14)

Let us note that the special case of the Meijer G-function ngg() from (2.14) is very important for applications. Due to

it in [10] it was proposed to name the function Gﬁ:g() as Meijer-Ngrlund one, due to important results of Nerlund for this

function.
We denote the ratio of gamma-functions by

Vnm = [T, T(a; + (n+ m)A;)
"L T (B + (n+m)B))

In [22, Corollary 1] it was proved that the function Hf]’jg

(H) : Y2 < Y1 and Y2, < Yno¥n2. foralln e No.

In addition, it was proved that the H-function Hg;g [t|£2ig Zi] is non-negative, if

n,me Ny.

(z) is non-negative on (0, p) if

k k
(Hy):0<oy < <ap 0<fr<---<fp Y Bi—Y >0 fork=1,...p
j=1 j=1

Corollary 1. Suppose that conditions (H) are satisfied. Then the function

a.B| (ap.A)
A prp [(ﬁi.A) x:l,

is log-convex on [0, oo). Furthermore, the following Turdn type inequality

2
o, B (ap.A) a,B| (ap.A+2) o, B | (ap,A+1)
Vop I:(ﬂ:A) X]VW [(ﬁ;,Aﬁ) X] - (Vnp [(ﬁZ,AH) X]) =0,
holds true.

Proof. Rewriting the integral representation (2.14) in the following form

1
wqwquﬁcmg

p.p | (Bp.A)

bv) xedt
a ) t(log(1/x) + Alog(1/t))f*1

(2.15)

(2.16)
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let us recall the Rogers-Hdolder-Riesz inequality [23, p. 54], that is

b b 1/p b 1/q9
/ If(t)g(t)ldts[/ If(t)l"dt] [/ |g<r>|ﬂdr} , (217)

where p > 1, % + % =1, f and g are real functions defined on (a, b) and [f]?, |g]9 are integrable functions on (a, b). From the

Rogers-Holder-Riesz inequality again and integral representation (2.16) using the fact that the function A — a>

1
(a+bA)A+1> = =
0,b > 0 is log-convex on [0, co) we derive that for A, A, >0 and A €0, 1],

1 00 by
x| = Gl t
J- o

xodt
) t(log(1/x) +1og(1/t) (A + (1 — 1)Az))P*!

1o b
< Ghol t
fo p~p<

p xedt

) t(log(1/x) + A; log(1/6)) P+ (log(1/x) + Az log(1/t)) ! #+D
1 by

| [G‘S:%(t

A
XC(
an) t(log(1/x) +A; log(1/6))*! ]
_ b,
Gho (t

o 1-1
) X ] dt
a ) t(log(1/x) + Ay log(1/))P*!

bP
Gy (t

yep (ap.AA;+(1-1)A;)
PP | (Bp. AMA1+(1-1)A)

IA

) xedt ]*
a ) t(log(1/x) + Ay log(1/t))P*

! po (. |P°
Gyl t
[

) xedt ]1k
a ) t(log(1/x) + Ay log(1/))P*!

B (ap.Ar)
(Vlgp [(ﬂiﬁll)

A 1-1
a.B| (ap.Az)
o) (e [Gk])

IA
T 1
S~
b

=S
s o

This implies that the function

|

is log-convex on (0, o). Now let us go to the Turdn type inequality (2.15). Choosing A; =A,Ay =A+2 and A = % in the
above inequality we get the desired result. O

o, B (ap.A)
A Vb [(ﬂppﬁ)

Corollary 2. Suppose that assumptions stated in Theorem 1 and conditions (HY) are satisfied. Then the following inequality for
the generalized Volterra function

X]Va.ﬂz [(ap,Aw x

.1 [ (@p.Ap)
v 1[ "By Pa | (bg.By)

T2 T(@) apyps [y
PG (bg.By) ]< l Vo' 2[ B

= (}=] F(b;) p.q (bq.Bg)

holds true for all 0 <x < 1,, By, By > —1.

x] (2.18)

Proof. Recall the Chebyshev integral inequality [23, p. 40]: if f,g: [a, b] — R are synchronous (both increasing or decreas-
ing) integrable functions, and p : [a, b] — R is a positive integrable function, then

b b b b
/ p(O)f(E)de / p(H)g(t)dt < / p(t)dt / p() F(O)g(t)dt. (2.19)

Note that if f and g are asynchronous (one is decreasing and the other is increasing), then (2.19) is reversed. Let Sy, 8, > —1
and consider functions p, f,g: [0, o] — R defined by:

o 1ppo (Bg.Bq) _ 1 — 1
PO =t H‘i”’(t’( pan)) TO= Gogtim +ogi/mnm & = Tlog(1/x) + log /07

Since the function p is non-negative on (0, o) and functions f and g are increasing on (0, p), we conclude that the inequality
(2.18) holds true by means of the Chebyshev integral inequality (2.19) applied to the Mellin transform of the Fox’s H-function
211. O

Remark 2. Under the conditions (H,), the inequality (2.18) reduces to the following inequality
P T (g
x:lvgbﬁz I:EEZQ; X] < i=1 ( l) V‘%ﬁﬁrﬂz I:(ava)

V%ﬂl I:(ava)
?:1 F(b,) p.q (by,A)
holds true for all 0 <x < 1,«, By, By > —1.

PP | (bg.A)

x] (2.20)
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Now let us note that Turan type inequalities and connected results on log-convexity/log-concavity for different classes of
special functions are very important and have many applications, cf. [8,9,11,13,14,17-21].
Here, and in what follows, we denote the Laplace transform pair for a suitable function f as follows:

F(t) =Lf(t), and f(t) =L 'F(t),
that is,

LF(E) = / Y e f(x)dx, and L-F(t) = ﬁ / eUF (s)ds.
0 Br

where Br denotes the Bromwich path. Recall that a function f: (0, 00) — (0, c0) is called completely monotonic, if f is
continuous on [0, co), infinitely differentiable on (0, co) and satisfies the following inequality:

-D"fMx) >0, (x>0, neNyg=1{0,1,2,...}).

The celebrated Bernstein Characterization Theorem gives a sufficient condition for the complete monotonicity of a function
fin terms of the existence of some non-negative locally integrable function K(x)(x > 0), referred to as the spectral function,
for which

oo

£(5) = L(K)(s) = /0 K (0)dr.

Corollary 3. Suppose that conditions of Theorem 1 are satisfied. In addition, assume that conditions (H{') are also valid. Then the
function Vf,ff [x] defined by

a,B | (ap.Ap) _.ya.B| (ap.Ap)
Vo [(bq.Bq) "] = Vo [(ﬁqm

e"‘], (2.21)
is completely monotonic on (0, oo) for all « >0 and B > —1. Moreover, the function

VOHS I:(avap) X]

P.q | (bg.Bq)
is also completely monotonic on (0, co) for each « >0 and B > —1 under the hypothesis (H;).

Proof. By using the integral representation (2.10), we can write the function v;{f [x] in the following form:

p
Vg.qﬁ [(a,,,A,,) x:| _ efax/O H;f;? <t

(buBY) (2.22)
So, the above representation reveals that ng [x] can be written as a product of two completely monotonic functions. This

(Bq‘ﬁq) dt_'
(Apap) ) E(X + log(1/t))B+1

implies that Vg_‘qﬁ[x] is completely monotonic on (0, ) for each @ >0and 8 > -1. O

As another applications of Theorem 1, infinite integral of some special functions are expressed in terms of the generalized
Volterra functions, see the following examples.

Example 1. Suppose that a, a; > 1 and by, b, > 0. Then the following identity holds:

1 oy —2 by+by—1
X4t (1 - t) 1402 ay+by—ay,b o, | (a;-1,1),(a;—1,1)
/o I (by + by) logh*! (1/xt)2Fl[ heiay 1 = t]dr = Va3 |:(b1+‘11*1~1§,(b2+112*1,1) X]’ O=x=t (2.23)
Indeed, by combining the formula (2.10) with the following formula [16, Eq. (1.142)]
(a1+b1-1,1),(az+b,—1,1) ta2-1 (1 _ t)b1+b271
H20( ¢ _ F [2tba—ta.bi|q _¢ 2.24
2‘2( (a1-1,1),(a3-1,1) ) I"(b1 + bz) 2 1[b‘+b2 | ] ( )
we get (2.23).
Example 2. In view of (2.10) and the identity [15, p. 127]
a+p+1
2(1-2)f =T (B+ DI (Ge?") =T (8 + 1)613?(2\ ) 0<z<1,
o
we deduce that the following equation
1 a-1 _ +\byo
/ r(bt ]S ﬂ?]’(‘] )dr:v;*f[(;i;il b x], 0<x<1. (2.25)
0 +1)log /Xt ' '
holds true.

In Corollary 4-6, motivated by Eqgs. (2.23) and (2.25), we found new integral formulas. In particular, new formula for the
Euler-Mascheroni constant y.
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Corollary 4. Let b> 0. Then, the following formula
/1 (1- f)Zb_lel[g'bbh - f] - 1 log(x)
0

" (2b) log(1/xt) ~b xb
is valid for 0 <x <1, where Ei(x) is the exponential integral function. In particular, we obtain

1 log(1/t)dt df—1_ log(x)
o log(1/x) +log(1/t) X

Ei(blog(x)).

Ei(log(x)).

T log(1/t)dt
o 1+1log(1/t)
Proof. Putting a; =a, =2, B =0and by =b, =b> 0 in (2.23), we find
fl (1 -2 1LR[ 5P -] i /oo X
0 ' (2b) log(1/xt) T Jo (t+b)2T
Take into account the following formula [6, Eq. (09), p. 134]

f°° e E (m—D! (=p)™'  (—p!
0 m=1

dt = 1+ eEi(~1).

WEj(—
Cron CEEN 7 CEE NN Ei(-ap), p>0, n>2, |arg(a)| <,

with (2.29), we deduce the formula (2.26). Now, letting b =1 in (2.26) and using the fact
log(t) = (t — 1), [gl 1- t]

we get (2.27). Finally, setting x = % in (2.27). So, the proof of is completes. O

Corollary 5. The following formula

1 dt 1
/ : = 5 , 0<x<1,
o tlogf*(1/xt)  Blogf (1x)

holds true for all B > 0. In particular, we have

! dt 1
/0 t(1—log(t)F1 — B
1 dt _q
/0 t(1-log(t))?

[ =
o t(1-log(t))*2
Proof. By (2.25), we get
1 ta-1(1 — t)bdt o0 [ (t + a)xitPde
/0 T+ 1)logf  (1/xt) Jo TB+DI({+a+b+1)

Letting a = b = 0 in the above inequality and from (2.44), we obtain

/1 dt =S} tﬁflxt dt
o tlog'(1xt) Jo T(B+1)

00 tﬂ—le— log(1/x)t

-] e

rp+1)
1

- Blog(1/%)
Finally, letting x = 1 in (2.31) we get (2.32). O
Corollary 6. Let n be a integer number such that n> 1. The following formula

1 dt 1| (=D 'Ei(log(x)) | s~ (m=DI(=1)""™
/0 log™ ' (1/xt) n![ X +m§ log™ (1/x) }

583

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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is valid for all 0 <x < 1. In particular, we get

1 de = (~1)k
V= e[/o 1 —Tog(1))?2 _1} _g Kkl (2.37)

where y is Euler—-Mascheroni constant.

Proof. Putting a=1,b=0 and B =n in (2.35), we thus get

1 00 Nyt
/ iit _ 1 t"x dt. (2.38)
o log"'(1yxt)y Tm+1)Jo t+1
We now make use of the following formula [6, Eq. (11), p. 135]
o0 tho— pt
/ dt = (=1)"'a"e®Ei(—ap) + Z(m—l)l( )" Mp™™ p>0, |arg(a)| <7 (2.39)
0 t+a m=1
with (2.38) we get (2.36). Setting n=1 and x = % in (2.36), we obtain
1 dt
————— =1+¢eEi(-1). 2.40
|, a=iogor b (2:40)

Keeping in mind the above formula with the following equation
k

. >, X
Ei(x) = y +log|x| + ) ol
k=1 """
we get (2.37). O

Moreover, in [12, Theorem 2], Karp and Prilepkina found the Mellin transform of the delta neutral H function when
MU =—m, m e Ny, that is

P T (At + o 2 (By.B0) m
M = / H? (2 ) e 4+ VLY i b6, 9(t) >y, (2.41)
k=1 F(Bkt + ﬂk) 0 ' (Ap.ap) k=0
where the coefficient v is defined by
a1 a3 . 3-b;
v=_0m)7 []A HBj , (2.42)
! 1
and the coefficients - satisfy the recurrence relation:
1< )
I = - > qml-m, withlp=1, (2.43)

m=1

with

i=1 t

(—1)m+1 Bumy1(a;) Bm+l (by)
e P .

where By, is the Bernoulli polynomial defined via generating function [26, p. 588]

eat

ZBn(a) |t <27,
Obviously, by repeating the same calculations in Theorem 1 with (2.41) and use the following known formula

/ pertde= L0+t o 4 o0 (2.44)
0

pa+1
we can deduce the following result:

Theorem 2. Let o, B > —1, 0 = —m, m € Ng and Zﬁ?:] Aj= Zzzl By.. Then the generalized Volterra function possesses the fol-

lowing integral representation:
(Bg. ) xodt o CB+k+1)
0 k
X] :/ ng< ) B+1 F(,B) Z In Brk+1’ (2.45)
0 A/ tlog?*! (1/(tx)) 5 [log(1/(xp))]
where 0 <x <1, the coefficients I are computed by (2.43), v and p are defined in (2.42) and (2.9).

o.B[ (ap.Ap)
v [
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In the next Theorem, we derive a Laplace type integral expression for the function M*lvgff [.].
|
X

t]dt, ) (2.46)

Theorem 3. Let o, B > —1 and A > 0. Then, the function

ya+sB| @pdp).(a+d.1)
p+lgq (Bq-Bg)

1 apaB [ @pAp).@tr1)
}]zx Vp+1,p[ (Ba.Bg)

possesses the following integral representation
1 0 —xtsd—1y,0.8 (ap.Ap)
}] :/0 et Vg [(ﬂq,Bq)

[(ap,Ap), (a+A.1)

Va+A,ﬁ (ap.Ap). (a+A,1)
p+lg (Bq-Bg)

Moreover the function V%P 1

p+1.q (bq.Bq)

] is completely monotonic on (0, co).

Proof. Make use the formula (2.44) and straightforward calculation yields

) o0 o0 p F(AS + a,) ts+agh
e—xttk—lva.ﬂ I:(Uvap) t:ldt _ / e—xttk—l i=1 1 1 ds |dt
/0 P4 [ (BaBo) 0 o [11,TBs+b)T(B+1)

_ oo 1P=l I'(Ais + a;) sP [/Oo e_xtt5+a+k—ldt:|ds
o [, TBs+bpT B+l

© T (s+a+ ) [T7, T(Ais + ;) sPx-Gta+h)
= / 7 = T 1 ds
0 [T;_, I'(Bjs +bj) B+1)
_ yeriBl@ap@an|1
— “p+lp (Bq.Bq) X '

Since the spectral function t*”V{,’f;ﬁ [t] being positive, all prerequisites of the Bernstein Characterization Theorem for the

a+h.B [(ap,Ap»(aM,n

completely monotone functions are fulfilled, that is the function V. (Ba By)

p+lg

1 . .
;] is completely monotone in the

above-mentioned range of the parameters involved. O

For some difficulties and wide-spread errors concerning generalization of the Bernstein Characterization Theorem to ab-
solutely monotonic functions cf. [27].

Remark 3. Using the fact that

o, (a,A)
Vl.Z |:(a,A),(Ol+1,l)

x] =uk B.a) (2.47)
and using the formula (2.46), we obtain

© [ (t +o + A)tPx-t—a—2

LA (x. B. _ t. 248
Chx B = | S e DI BT (248)
In particular, for A = 1, we find [5, formula 8]
o phx-t-o 1
Lux, B = | (2.49)

TB+1)  xarlloghtl(x)

Letting o = 0 in the above formula, we obtain the equation (7) in [5]. In addition, we set 8 =0 and A =1 in (2.48) we
obtain the formula 6 in [5].

Theorem 4. Let o, 8 > —1,n > 0. Then, we get

L]{log(é)va,ﬁ [(ap,Ap) 1]}(X): T, T(a; + tANtPx 4y (t + o + 1)
Epa-1[ (180 0 r(ﬂ+1)r(a+1+t)n§;}r(bj+t3j)

§

ap[ @Ay
—log(§)V,4 I:(bq,ll.]qul),(oHl,])

x]. (2.50)

Proof. We set (bq, Bg) = (@ + 1+ 1,1) and define the function F(x) by

_ [y B[ @php
Foo= [ v [

x]ranan.
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Keeping (2.44) in mind, we get
LEYE) = [ [T e[ £ondnax

o0 o) o) p (At . t+0t+r]tﬂ
= / / / e—fx _li=1 (A :_a’)x f(n)dndxdt
o Jo Jo F(ﬂ+1)]_[j=1F(Bjt+bj)

00 poo 11 F(Ait + ai)tﬁ 1 t+a+n+1
= i=1 1
_/0 fo 1"(/3+1)1‘[;!;} F(Bjt+bj)<§) f(n)dndt

o ap.Ap > (1Y’
=i [, | ug] [ () foodn
o ay.A, 17Lf(
= Vp,ﬁl[ﬁbqf,tgq,l) g]w (2.51)
This implies that
Feo =17 {Vﬁf—l [ [ ] } ®- (252)

Now, suppose that f(n) = §(n), where § is the Dirac delta function. Since L(8’(§)) = &, we deduce, by the above formula,

that
1 Lf(IOg(E)) © o+, ap.Ap
D S GG

Combining (2.53)with the following formula
| rosm e = <11 o),
0
we obtain

L—l {VOH3 [ (ap.Ap)

-1} ya.B (ap.Ap)
L {vpvq_l[(bql-Bql)

x]S’(n)dn. (2.53)

P.q—=1] (bg_1.B_1) | x X 097 (bp.By) %-] (2.54)

1 ]Lf(l()g(x)) }(g) — _lim ivg;’]ﬂ [(ap-Ap)
n—

Moreover, we have

.0 arn gl
%T})ﬁvp.q I:(bp.Bq)

é] = log(6)V;'y I:(bqf?él;\i)).(aﬂ.l)‘g:l
(7 L D@+ APEey o +1) (2.55)
0 r(ﬂ+1)r(a+1+t)n§;}r(b,-+t3j) '

In view of (2.54) and (2.55) we obtain the desired result. The proof of Theorem 4 is complete. O

Remark 4. let q=p+1,a;=b;and A;=B; fori=1,..., p in (2.50), we obtain

1 1 e Yt a4+ 1)
L {émllogﬁ(é)}(x) =), TET @1 +t)dt —log(x)u(x, B, @). (2.56)
In particular, for 8 = 0, we find [5, Eq. (20)]
xo{ _ °°X“'“1ﬁ(t+ot+1)
oD _/0 oyt~ 0BV (), @ = 1. (2.57)
In addition, by using (2.49), we have
_1 1 _ B

Keeping in mind (2.58) and (2.56), we obtain (see [4, formula (38)])
o] xt+a t-l-Ol +1
wx, B—1,a)+logx)ux, B, o) =/0 XY t+a+1)

Frt+oa+1)
Corollary 7. Suppose that
a>0,8>-1, (ap,Ap) = (o,1) and (bg,Bg) = (@ +1n+1,1).
Then the next convolution representation holds

o0 o ap, 1 o -1 —1
v e e emn = raaogeoy = (Vi [ ] (2.60)

dt. (2.59)
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Proof. By means of Theorem 3, we have

“1yeB[ @pap| 1 _yaB [@ap.@)
L{X ng [ "B, ;]}(5)—‘/5“@[@5735)

(bq,Bg)
So, from the above formula and (2.52) we conclude that (2.60) holds. O

1]4 (2.61)

N

3. Mathieu-type series associated with the generalized Volterra function

Our aim in this section is to derive some integral representations for a family of convergent Mathieu-type series and its
alternating variants with terms containing generalized Volterra functions.
Throughout this section, we adopt the following notation for the real sequence c:

c:0<cp <<y oo. (3.62)

It is useful here to consider the function c : R, — R, such that

c(x)

=C.
xeN

In this section, we investigate the Mathieu-type series K and its alternating variant £, which are defined by

) -\

C.

aB e j aB [@Ap).(+a1)| T

K(Vpﬂ,q’ Gr) = 21: (cj+r)H 'Vp+1,q[ ?b;Bq) )a] (3.63)
Jj=

and
. o0 (_1)1‘—10—}\
B e J
Rk pen = >

o.B [(ap_Ap),(a+,\,1>
j=1

(e retal Goo

CL]] (3.64)

The Laplace integral form of a Dirichlet series was one of most powerful tools in getting closed integral form expressions
for the Mathieu-type series K and its alternating variant £. For ¢ satisfying (3.62), we have
) 00
D)=y e = x / e XA, (t)dt, (3.65)
0
n=1
where the so-called counting function A;(t) has been found easily in the following manner
Ay =3 1=[ct@n)],
n:a) >t

where ¢~1(t) is the inverse function of c(x), and [a] is the integer part of a real number a. From this, and using the fact
that

[c(t7)] =0, t [0, ),
we find that

De(x) = X / w e [c1(t7)]dt. (3.66)

A comprehensive overview of this technique is in [24,25]. Note important results on inequalities for Mathieu series proved
by Zastavnyi in [30,31] and Tomovski et al. in [28,29].

Theorem 5. Let o, B > —1 and X, u, r> 0. Then for the Mathieu-type power series IC(V;;"? ¢ G r) the next integral representation
is valid:

KWL rer) =K h u+1) + ukY (4 + 1. ). (3.67)
where

v ™ [T @] Gap [@an.@ian|T

KY (r, 0, 1) = /C WVPM[ | (3.68)

Proof. Consider the Laplace transform formula (2.46) of the function x**lvl‘,’f;f[.] and in view of (2.44) and (3.66), we get
K VO(,H .- _ = 1 OO —Cjs )L—lva,/s (ap.Ap)
Wpig &) = 21: (ci+r)H Jo ¢ ha [“’PBW

J:

_ 1 i/m [oo e—cjs—(chrr)ttu—lSk—lvavﬁ I:(ap,Ap)
() oJo Jo P4 (by.Bo)

rs] dx

rs] dxdt
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1 oS -
e e—Cj(S+[) 7T[tll 1 )\ 1VOl B I:(up ») S:I dxdt
X /0 /(; ; P4 | (by.By)

= fcm %ﬁ?] (fom e’(”")tt"’ldt> (fo e sty P [EZ” /;") rs]ds)dx

o0 —1 00 .
o, Sy U e e () e [ e

* [T )] Lap [@pap.@irind)
= -/Cl x)»+1 (r + x)/,L VP+1.q |:(bq Bg) ‘ ]deX

('] ap [@ap.@r)
+'“/ XA (1 4 x)it1 (it e, q[(bq By)

which proves the Theorem 5. O

]dsdx (3.69)

Obviously, by repeating the same calculations as above and using the formula (see [25, Eq. (13)])
Be(y) _Z( 1)i-1 *w—yf e sin? ( [c *1(x)]) (3.70)

we can deduce the following result for the alternating Mathieu-type power series K.

Theorem 6. Let o, f > —1 and A, p, r> 0. Then for the alternating Mathieu-type power series IC(V ; C; 1) the next integral

p+1.q°

representation is valid:

RESE sen) =R w+ 1)+ pRE (A +1, ), (3.71)
where

2 (-1
_ < sin* (Z[c"1(x)]) r
vV _ 2 a,B | (ap.Ap). (a+A,1)
I<C (r, )\4, ,LL) = /‘;1 WVP+]-Q[ Izb:Bq) }]dx (372)

4. Conclusion

Our present investigation was motivated essentially by the fact that the Volterra function play an important role in a
variety of fields of mathematics, namely in the theory of definite integrals, integral equations and prime numbers. In recent
years, such studies have attracted a large number of researchers who made use in a large variety of problems associated
with the properties of other special functions, for example, Apelblat has proved that the infinite integrals with respect to the
order of the Bessel and related functions can be developed into series of the Volterra functions and some infinite integrals
of gamma and polygamma functions are expressible in terms of the Volterra functions. In this paper, we first introduced
extension of the Volterra function in term of a ratio of gamma functions, we then proved its various properties such as
integral representations when their terms contain the Fox H-function. In particular, we have presented several other prop-
erties: infinite integral of some special functions are expressed in terms of the generalized Volterra functions, closed-form
integral representations for a family of convergent Mathieu-type series defined in terms of generalized Volterra functions
are established, and some generalization of some results proved in the literature for the classical Volterra function are given.
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