2,571 research outputs found
A possible theoretical explanation of metallicity gradients in elliptical galaxies
Models of chemical evolution of elliptical galaxies taking into account
different escape velocities at different galactocentric radii are presented. As
a consequence of this, the chemical evolution develops differently in different
galactic regions; in particular, we find that the galactic wind, powered by
supernovae (of type II and I) starts, under suitable conditions, in the outer
regions and successively develops in the central ones. The rate of star
formation (SFR) is assumed to stop after the onset of the galactic wind in each
region. The main result found in the present work is that this mechanism is
able to reproduce metallicity gradients, namely the gradients in the
index, in good agreement with observational data. We also find that in order to
honor the constant [Mg/Fe] ratio with galactocentric distance, as inferred from
metallicity indices, a variable initial mass function as a function of
galactocentric distance is required. This is only a suggestion since trends on
abundances inferred just from metallicity indices are still uncertain.Comment: 18 pages, LaTeX file with 4 figures using mn.sty, submitted to MNRA
Galactic Winds in Irregular Starburst Galaxies
In this paper we present some results concerning the study of the development
of galactic winds in blue compact galaxies. In particular, we model a situation
very similar to that of the galaxy IZw18, the most metal poor and unevolved
galaxy known locally. To do that we compute the chemo-dynamical evolution of a
galaxy in the case of one istantaneous isolated starburst as well as in the
case of two successive instantaneous starbursts. We show that in both cases a
metal enriched wind develops and that the metals produced by the type Ia SNe
are lost more efficiently than those produced by type II SNe. We also find that
one single burst is able to enrich chemically the surrounding region in few
Myr. Both these results are the effect of the assumed efficiency of energy
transfer from SNe to ISM and to the consideration of type Ia SNe in this kind
of problem. The comparison with observed abundances of IZw18 suggests that this
galaxy is likely to have suffered two bursts in its life, with the previous
being less intense than the last one.Comment: 3 pages, 1 figure, to appear in the Proceedings of the Conference
"Cosmic Evolution", Paris, November 200
Testing the universal stellar IMF on the metallicity distribution in the bulges of the Milky Way and M31
We test whether the universal initial mass function (UIMF) or the integrated
galaxial IMF (IGIMF) can be employed to explain the metallicity distribution
(MD) of giants in the Galactic bulge. We make use of a single-zone chemical
evolution model developed for the Milky Way bulge in the context of an
inside-out model for the formation of the Galaxy. We checked whether it is
possible to constrain the yields above 80 M_{\sun} by forcing the UIMF and
required that the resulting MD matches the observed ones. We also extended the
analysis to the bulge of M31 to investigate a possible variation of the IMF
among galactic bulges. Several parameters that have an impact on stellar
evolution (star-formation efficiency, gas infall timescale) are varied. We show
that it is not possible to satisfactorily reproduce the observed metallicity
distribution in the two galactic bulges unless assuming a flatter IMF () than the universal one. We conlude that it is necessary to assume a
variation in the IMF among the various environments.Comment: 9 pages, 4 figures, accepted for publication in A&
The impact of stellar rotation on the CNO abundance patterns in the Milky Way at low metallicities
We investigate the effect of new stellar models, which take rotation into
account, computed for very low metallicities on the chemical evolution of the
earliest phases of the Milky Way. We check the impact of these new stellar
yields on a model for the halo of the Milky Way that can reproduce the observed
halo metallicity distribution. In this way we try to better constrain the ISM
enrichment timescale, which was not done in our previous work. The stellar
models adopted in this work were computed under the assumption that the ratio
of the initial rotation velocity to the critical velocity of stars is roughly
constant with metallicity. This naturally leads to faster rotation at lower
metallicity, as metal poor stars are more compact than metal rich ones. We find
that the new Z = 10-8 stellar yields computed for large rotational velocities
have a tremendous impact on the interstellar medium nitrogen enrichment for
log(O/H)+12 < 7 (or [Fe/H]< -3). We show that upon the inclusion of the new
stellar calculations in a chemical evolution model for the galactic halo with
infall and outflow, both high N/O and C/O ratios are obtained in the very-metal
poor metallicity range in agreement with observations. Our results give further
support to the idea that stars at very low metallicities could have initial
rotational velocities of the order of 600-800kms-1. An important contribution
to N from AGB stars is still needed in order to explain the observations at
intermediate metallicities. One possibility is that AGB stars at very low
metallicities also rotate fast. This could be tested in the future, once
stellar evolution models for fast rotating AGB stars will be available.Comment: Contribution to Nuclei in the Cosmos IX (Proceedings of Science - 9
pages, 4 figs., accepted) - Version 2: one reference added in the caption of
Fig.
Galactic and Cosmic Type Ia SN rates: is it possible to impose constraints on SNIa progenitors?
We compute the Type Ia supernova rates in typical elliptical galaxies by
varying the progenitor models for Type Ia supernovae. To do that a formalism
which takes into account the delay distribution function (DTD) of the explosion
times and a given star formation history is adopted. Then the chemical
evolution for ellipticals with baryonic initial masses , and
is computed, and the mass of Fe produced by each galaxy is
precisely estimated. We also compute the expected Fe mass ejected by
ellipticals in typical galaxy clusters (e.g. Coma and Virgo), under different
assumptions about Type Ia SN progenitors. As a last step, we compute the cosmic
Type Ia SN rate in an unitary volume of the Universe by adopting several cosmic
star formation rates and compare it with the available and recent observational
data. Unfortunately, no firm conclusions can be derived only from the cosmic
SNIa rate, neither on SNIa progenitors nor on the cosmic star formation rate.
Finally, by analysing all our results together, and by taking into account
previous chemical evolution results, we try to constrain the best Type Ia
progenitor model. We conclude that the best progenitor models for Type Ia SNe
are still the single degenerate model, the double degenerate wide model, and
the empirical bimodal model. All these models require the existence of prompt
Type Ia supernovae, exploding in the first 100 Myr since the beginning of star
formation, although their fraction should not exceed 15-20% in order to fit
chemical abundances in galaxies.Comment: 17 pages, 11 figures, Submitted to MNRA
Effects of the integrated galactic IMF on the chemical evolution of the solar neighbourhood
The initial mass function determines the fraction of stars of different
intial mass born per stellar generation. In this paper, we test the effects of
the integrated galactic initial mass function (IGIMF) on the chemical evolution
of the solar neighbourhood. The IGIMF (Weidner & Kroupa 2005) is computed from
the combination of the stellar intial mass function (IMF), i.e. the mass
function of single star clusters, and the embedded cluster mass function, i.e.
a power law with index beta. By taking into account also the fact that the
maximum achievable stellar mass is a function of the total mass of the cluster,
the IGIMF becomes a time-varying IMF which depends on the star formation rate.
We applied this formalism to a chemical evolution model for the solar
neighbourhood and compared the results obtained by assuming three possible
values for beta with the results obtained by means of a standard, well-tested,
constant IMF. In general, a lower absolute value of beta implies a flatter
IGIMF, hence a larger number of massive stars and larger metal ejection rates.
This translates into higher type Ia and II supernova rates, higher mass
ejection rates from massive stars and a larger amount of gas available for star
formation, coupled with lower present-day stellar mass densities. (abridged) We
also discuss the importance of the present day stellar mass function (PDMF) in
providing a way to disentangle among various assumptions for beta. Our results
indicate that the model adopting the IGIMF computed with beta ~2 should be
considered the best since it allows us to reproduce the observed PDMF and to
account for most of the chemical evolution constraints considered in this work.Comment: 22 pages, 19 figure
- …
