Models of chemical evolution of elliptical galaxies taking into account
different escape velocities at different galactocentric radii are presented. As
a consequence of this, the chemical evolution develops differently in different
galactic regions; in particular, we find that the galactic wind, powered by
supernovae (of type II and I) starts, under suitable conditions, in the outer
regions and successively develops in the central ones. The rate of star
formation (SFR) is assumed to stop after the onset of the galactic wind in each
region. The main result found in the present work is that this mechanism is
able to reproduce metallicity gradients, namely the gradients in the Mg2
index, in good agreement with observational data. We also find that in order to
honor the constant [Mg/Fe] ratio with galactocentric distance, as inferred from
metallicity indices, a variable initial mass function as a function of
galactocentric distance is required. This is only a suggestion since trends on
abundances inferred just from metallicity indices are still uncertain.Comment: 18 pages, LaTeX file with 4 figures using mn.sty, submitted to MNRA