457 research outputs found

    Particle detection by a light-scattering technique

    Get PDF
    Instrument measures concentration of small particles in aqueous medium in terms of amount of light scattered and degree to which light transmission is attenuated. Sensitivity to small particles is optimized because both scattered and transmitted illumination levels are detected by photodiodes

    Static analysis for ECMAscript string manipulation programs

    Get PDF
    In recent years, dynamic languages, such as JavaScript or Python, have been increasingly used in a wide range of fields and applications. Their tricky and misunderstood behaviors pose a great challenge for static analysis of these languages. A key aspect of any dynamic language program is the multiple usage of strings, since they can be implicitly converted to another type value, transformed by string-to-code primitives or used to access an object-property. Unfortunately, string analyses for dynamic languages still lack precision and do not take into account some important string features. In this scenario, more precise string analyses become a necessity. The goal of this paper is to place a first step for precisely handling dynamic language string features. In particular, we propose a new abstract domain approximating strings as finite state automata and an abstract interpretation-based static analysis for the most common string manipulating operations provided by the ECMAScript specification. The proposed analysis comes with a prototype static analyzer implementation for an imperative string manipulating language, allowing us to show and evaluate the improved precision of the proposed analysis

    A Semantic Hierarchy for Erasure Policies

    Get PDF
    We consider the problem of logical data erasure, contrasting with physical erasure in the same way that end-to-end information flow control contrasts with access control. We present a semantic hierarchy for erasure policies, using a possibilistic knowledge-based semantics to define policy satisfaction such that there is an intuitively clear upper bound on what information an erasure policy permits to be retained. Our hierarchy allows a rich class of erasure policies to be expressed, taking account of the power of the attacker, how much information may be retained, and under what conditions it may be retained. While our main aim is to specify erasure policies, the semantic framework allows quite general information-flow policies to be formulated for a variety of semantic notions of secrecy.Comment: 18 pages, ICISS 201

    The effects of vaccination and immunity on bacterial infection dynamics in vivo.

    Get PDF
    Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.This work was supported by the Biotechnology and Biological Sciences Research Council [grant number BB/I002189/1].This is the published manuscript. It was originally published by PLOS One here: http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1004359

    Verifying Bounded Subset-Closed Hyperproperties

    Get PDF
    Hyperproperties are quickly becoming very popular in the context of systems security, due to their expressive power. They differ from classic trace properties since they are represented by sets of sets of executions instead of sets of executions. This allows us, for instance, to capture information flow security specifications, which cannot be expressed as trace properties, namely as predicates over single executions. In this work, we reason about how it is possible to move standard abstract interpretation-based static analysis methods, designed for trace properties, towards the verification of hyperproperties. In particular, we focus on the verification of bounded subset-closed hyperproperties which are easier to verify than generic hyperproperties. It turns out that a lot of interesting specifications (e.g., Non-Interference) lie in this category

    Statically Analyzing Information Flows - An Abstract Interpretation-based Hyperanalysis for Non-Interference.

    Get PDF
    In the context of systems security, information flows play a central role. Unhandled information flows potentially leave the door open to very dangerous types of attacks, such as code injection or sen- sitive information leakage. Information flows verification is based on the definition of Non-Interference [8], which is known to be an hyperproperty [7], i.e., a property of sets of executions. The sound verification of hyperproperties is not trivial [3, 16]: It is not easy to adapt classic verification methods, used for trace properties, in order to deal with hyperproperties. In the present work, we design an abstract interpretation-based static analyzer soundly checking Non-Interference. In particular, we define an hyper abstract do- main, able to approximate the information flows occurring in the analyzed programs

    Modifying bacterial flagellin to evade Nod-like Receptor CARD 4 recognition enhances protective immunity against Salmonella.

    Get PDF
    Pattern recognition receptors (PRRs) expressed in antigen-presenting cells are thought to shape pathogen-specific immunity by inducing secretion of costimulatory cytokines during T-cell activation, yet data to support this notion in vivo are scarce. Here, we show that the cytosolic PRR Nod-like Receptor CARD 4 (NLRC4) suppresses, rather than facilitates, effector and memory CD4+ T-cell responses against Salmonella in mice. NLRC4 negatively regulates immunological memory by preventing delayed activation of the cytosolic PRR NLR pyrin domain 3 (NLRP3) that would otherwise amplify the production of cytokines important for the generation of Th1 immunity such as intereukin-18. Consistent with a role for NLRC4 in memory immunity, primary challenge with Salmonella expressing flagellin modified to largely evade NLRC4 recognition notably increases protection against lethal rechallenge. This finding suggests flagellin modification to reduce NLRC4 activation enhances protective immunity, which could have important implications for vaccine development against flagellated microbial pathogens.Wellcome Trus

    Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection

    Get PDF
    Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome

    Epigenetic Differences in Cortical Neurons from a Pair of Monozygotic Twins Discordant for Alzheimer's Disease

    Get PDF
    DNA methylation [1], [2] is capable of modulating coordinate expression of large numbers of genes across many different pathways, and may therefore warrant investigation for their potential role between genes and disease phenotype. In a rare set of monozygotic twins discordant for Alzheimer's disease (AD), significantly reduced levels of DNA methylation were observed in temporal neocortex neuronal nuclei of the AD twin. These findings are consistent with the hypothesis that epigenetic mechanisms may mediate at the molecular level the effects of life events on AD risk, and provide, for the first time, a potential explanation for AD discordance despite genetic similarities
    • …
    corecore