417 research outputs found

    Follow-up of multi-messenger alerts with the KM3NeT ARCA and ORCA detectors

    Get PDF
    The strength of multi-messenger astronomy comes from its capability to increase the significance of a detection through the combined observation of events coincident in space and time. This is particularly valuable for transient events, since the use of a narrow time window can allow a reduction of background of the search. In KM3NeT, we are actively monitoring and analysing a variety of external triggers in real-time, including alerts like IceCube neutrinos, HAWC gamma-ray transients, LIGO-Virgo- KAGRA gravitational waves, SNEWS neutrino alerts, and others. In this contribution, we present the follow-up of various external alerts using the comple- mentary capabilities of the two KM3NeT detectors, ORCA (covering the few GeV to few TeV energy range) and ARCA (ranging from sub-TeV energies up to tens of PeV). Both detectors were collecting high-quality data with partial configurations during the period of the studied alerts, which goes from December 2021 until June 2023

    Conspicuity and muscle-invasiveness assessment for bladder cancer using VI-RADS: a multi-reader, contrast-free MRI study to determine optimal b-values for diffusion-weighted imaging

    Get PDF
    To (1) compare bladder cancer (BC) muscle invasiveness among three b-values using a contrast-free approach based on Vesical Imaging-Reporting and Data System (VI-RADS), to (2) determine if muscle-invasiveness assessment is affected by the reader experience, and to (3) compare BC conspicuity among three b-values, qualitatively and quantitatively

    Rituximab Unveils Hypogammaglobulinemia and Immunodeficiency in Children with Autoimmune Cytopenia

    Get PDF
    BACKGROUND: Rituximab (RTX; anti-CD20 mAb) is a treatment option in children with refractory immune thrombocytopenia, autoimmune hemolytic anemia (AHA), and Evans syndrome (ES). Prevalence and clinical course of RTX-induced hypogammaglobulinemia in these patients are poorly known. OBJECTIVE: To evaluate the prevalence and risk factors for persistent hypogammaglobulinemia (PH) after RTX use. METHODS: Clinical and immunologic data from children treated with RTX for immune thrombocytopenia, AHA, and ES were collected from 16 Italian centers and 1 UK center at pre-RTX time point (0), +6 months, and yearly, up to 4 years post-RTX. Patients with previously diagnosed malignancy or primary immune deficiency (PID) were excluded. RESULTS: We analyzed 53 children treated with RTX for immune thrombocytopenia (n = 36), AHA (n = 13), and ES (n = 4). Median follow-up was 30 months (range, 12-48). Thirty-two percent of patients (17 of 53) experienced PH, defined as IgG levels less than 2 SD for age at last follow-up (>12 months after RTX). Significantly delayed B-cell recovery was observed in children experiencing PH (hazard ratio, 0.55; P < .05), and 6 of 17 (35%) patients had unresolved B-cell lymphopenia at last follow-up. PH was associated with IgA and IgM deficiency, younger age at RTX use (51 vs 116 months; P < .01), a diagnosis of AHA/ES, and better response to RTX. Nine patients with PH (9 of 17 [53%]) were eventually diagnosed with a PID. CONCLUSIONS: Post-RTX PH is a frequent condition in children with autoimmune cytopenia; a sizable proportion of patients with post-RTX PH were eventually diagnosed with a PID. In-depth investigation for PID is therefore recommended in these patients

    Inter-observer Variability of Expert-derived Morphologic Risk Predictors in Aortic Dissection

    Get PDF
    OBJECTIVES: Establishing the reproducibility of expert-derived measurements on CTA exams of aortic dissection is clinically important and paramount for ground-truth determination for machine learning. METHODS: Four independent observers retrospectively evaluated CTA exams of 72 patients with uncomplicated Stanford type B aortic dissection and assessed the reproducibility of a recently proposed combination of four morphologic risk predictors (maximum aortic diameter, false lumen circumferential angle, false lumen outflow, and intercostal arteries). For the first inter-observer variability assessment, 47 CTA scans from one aortic center were evaluated by expert-observer 1 in an unconstrained clinical assessment without a standardized workflow and compared to a composite of three expert-observers (observers 2-4) using a standardized workflow. A second inter-observer variability assessment on 30 out of the 47 CTA scans compared observers 3 and 4 with a constrained, standardized workflow. A third inter-observer variability assessment was done after specialized training and tested between observers 3 and 4 in an external population of 25 CTA scans. Inter-observer agreement was assessed with intraclass correlation coefficients (ICCs) and Bland-Altman plots. RESULTS: Pre-training ICCs of the four morphologic features ranged from 0.04 (-0.05 to 0.13) to 0.68 (0.49-0.81) between observer 1 and observers 2-4 and from 0.50 (0.32-0.69) to 0.89 (0.78-0.95) between observers 3 and 4. ICCs improved after training ranging from 0.69 (0.52-0.87) to 0.97 (0.94-0.99), and Bland-Altman analysis showed decreased bias and limits of agreement. CONCLUSIONS: Manual morphologic feature measurements on CTA images can be optimized resulting in improved inter-observer reliability. This is essential for robust ground-truth determination for machine learning models. KEY POINTS: • Clinical fashion manual measurements of aortic CTA imaging features showed poor inter-observer reproducibility. • A standardized workflow with standardized training resulted in substantial improvements with excellent inter-observer reproducibility. • Robust ground truth labels obtained manually with excellent inter-observer reproducibility are key to develop reliable machine learning models

    Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) in Uncomplicated Type B Aortic Dissection: Study Design and Rationale

    Full text link
    PURPOSE To describe the design and methodological approach of a multicenter, retrospective study to externally validate a clinical and imaging-based model for predicting the risk of late adverse events in patients with initially uncomplicated type B aortic dissection (uTBAD). MATERIALS AND METHODS The Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) is a collaboration between 10 academic aortic centers in North America and Europe. Two centers have previously developed and internally validated a recently developed risk prediction model. Clinical and imaging data from eight ROADMAP centers will be used for external validation. Patients with uTBAD who survived the initial hospitalization between January 1, 2001, and December 31, 2013, with follow-up until 2020, will be retrospectively identified. Clinical and imaging data from the index hospitalization and all follow-up encounters will be collected at each center and transferred to the coordinating center for analysis. Baseline and follow-up CT scans will be evaluated by cardiovascular imaging experts using a standardized technique. RESULTS The primary end point is the occurrence of late adverse events, defined as aneurysm formation (≥6 cm), rapid expansion of the aorta (≥1 cm/y), fatal or nonfatal aortic rupture, new refractory pain, uncontrollable hypertension, and organ or limb malperfusion. The previously derived multivariable model will be externally validated by using Cox proportional hazards regression modeling. CONCLUSION This study will show whether a recent clinical and imaging-based risk prediction model for patients with uTBAD can be generalized to a larger population, which is an important step toward individualized risk stratification and therapy.Keywords: CT Angiography, Vascular, Aorta, Dissection, Outcomes Analysis, Aortic Dissection, MRI, TEVAR© RSNA, 2022See also the commentary by Rajiah in this issue

    No improvement of survival with reduced- versus high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor patients

    Get PDF
    Background: Outcomes of Ewing tumor (ET) patients treated with allogeneic stem cell transplantation (allo-SCT) were compared regarding the use of reduced-intensity conditioning (RIC) and high-intensity conditioning (HIC) regimens as well as human leukocyte antigen (HLA)-matched and HLA-mismatched grafts. Patients and methods: We retrospectively analyzed data of 87 ET patients from the European Group for Blood and Marrow Transplantation, Pediatric Registry for Stem Cell Transplantations, Asia Pacific Blood and Marrow Transplantation and MetaEICESS registries treated with allo-SCT. Fifty patients received RIC (group A) and 37 patients received HIC (group B). Twenty-four patients received HLA-mismatched grafts and 63 received HLA-matched grafts. Results: Median overall survival was 7.9 months [±1.24, 95% confidence interval (CI) 5.44-10.31] for group A and 4.4 months (±1.06, 95% CI 2.29-6.43) for group B patients (P = 1.3). Death of complications (DOC) occurred in 4 of 50 (0.08) and death of disease (DOD) in 33 of 50 (0.66) group A and in 16 of 37 (0.43) and 17 of 37 (0.46) group B patients, respectively. DOC incidence was decreased (P < 0.01) and DOD/relapse increased (P < 0.01) in group A compared with group B. HLA mismatch was not generally associated with graft-versus-Ewing tumor effect (GvETE). Conclusions: There was no improvement of survival with RIC compared with HIC due to increased DOD/relapse incidence after RIC despite less DOC incidence. This implicates general absence of a clinically relevant GvETE with current protocol

    KM3NeT broadcast optical data transport system

    Get PDF
    The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed

    Probing invisible neutrino decay with KM3NeT-ORCA

    Get PDF
    In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state ν3\nu_3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/α3=τ3/m3<1801/\alpha_3=\tau_3/m_3 < 180~ps/eV\mathrm{ps/eV} at 90%90\% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for θ23\theta_{23}, Δm312\Delta m^2_{31} and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.Comment: 27 pages, 14 figures, bibliography updated, typos correcte

    Embedded Software of the KM3NeT Central Logic Board

    Full text link
    The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes
    corecore