166 research outputs found
A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks
Among the many possible approaches for the parallelization of self-organizing
networks, and in particular of growing self-organizing networks, perhaps the
most common one is producing an optimized, parallel implementation of the
standard sequential algorithms reported in the literature. In this paper we
explore an alternative approach, based on a new algorithm variant specifically
designed to match the features of the large-scale, fine-grained parallelism of
GPUs, in which multiple input signals are processed at once. Comparative tests
have been performed, using both parallel and sequential implementations of the
new algorithm variant, in particular for a growing self-organizing network that
reconstructs surfaces from point clouds. The experimental results show that
this approach allows harnessing in a more effective way the intrinsic
parallelism that the self-organizing networks algorithms seem intuitively to
suggest, obtaining better performances even with networks of smaller size.Comment: 17 page
Investigation of topographical stability of the concave and convex Self-Organizing Map variant
We investigate, by a systematic numerical study, the parameter dependence of
the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf
concave and convex learning with respect to different input distributions,
input and output dimensions
Wide Field Imaging. I. Applications of Neural Networks to object detection and star/galaxy classification
[Abriged] Astronomical Wide Field Imaging performed with new large format CCD
detectors poses data reduction problems of unprecedented scale which are
difficult to deal with traditional interactive tools. We present here NExt
(Neural Extractor): a new Neural Network (NN) based package capable to detect
objects and to perform both deblending and star/galaxy classification in an
automatic way. Traditionally, in astronomical images, objects are first
discriminated from the noisy background by searching for sets of connected
pixels having brightnesses above a given threshold and then they are classified
as stars or as galaxies through diagnostic diagrams having variables choosen
accordingly to the astronomer's taste and experience. In the extraction step,
assuming that images are well sampled, NExt requires only the simplest a priori
definition of "what an object is" (id est, it keeps all structures composed by
more than one pixels) and performs the detection via an unsupervised NN
approaching detection as a clustering problem which has been thoroughly studied
in the artificial intelligence literature. In order to obtain an objective and
reliable classification, instead of using an arbitrarily defined set of
features, we use a NN to select the most significant features among the large
number of measured ones, and then we use their selected features to perform the
classification task. In order to optimise the performances of the system we
implemented and tested several different models of NN. The comparison of the
NExt performances with those of the best detection and classification package
known to the authors (SExtractor) shows that NExt is at least as effective as
the best traditional packages.Comment: MNRAS, in press. Paper with higher resolution images is available at
http://www.na.astro.it/~andreon/listapub.htm
Self Organized Dynamic Tree Neural Network
Cluster analysis is a technique used in a variety of fields. There are currently various algorithms used for grouping elements that are based on different methods including partitional, hierarchical, density studies, probabilistic, etc. This article will present the SODTNN, which can perform clustering by integrating hierarchical and density-based methods. The network incorporates the behavior of self-organizing maps and does not specify the number of existing clusters in order to create the various groups
PCA Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes
Multidimensional data distributions can have complex topologies and variable
local dimensions. To approximate complex data, we propose a new type of
low-dimensional ``principal object'': a principal cubic complex. This complex
is a generalization of linear and non-linear principal manifolds and includes
them as a particular case. To construct such an object, we combine a method of
topological grammars with the minimization of an elastic energy defined for its
embedment into multidimensional data space. The whole complex is presented as a
system of nodes and springs and as a product of one-dimensional continua
(represented by graphs), and the grammars describe how these continua transform
during the process of optimal complex construction. The simplest case of a
topological grammar (``add a node'', ``bisect an edge'') is equivalent to the
construction of ``principal trees'', an object useful in many practical
applications. We demonstrate how it can be applied to the analysis of bacterial
genomes and for visualization of cDNA microarray data using the ``metro map''
representation. The preprint is supplemented by animation: ``How the
topological grammar constructs branching principal components
(AnimatedBranchingPCA.gif)''.Comment: 19 pages, 8 figure
BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection
<p>Abstract</p> <p>Background</p> <p>Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.</p> <p>Results</p> <p>In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.</p> <p>Conclusion</p> <p>BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. The BLProt software is available at <url>http://www.inb.uni-luebeck.de/tools-demos/bioluminescent%20protein/BLProt</url></p
- …