166 research outputs found

    A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks

    Full text link
    Among the many possible approaches for the parallelization of self-organizing networks, and in particular of growing self-organizing networks, perhaps the most common one is producing an optimized, parallel implementation of the standard sequential algorithms reported in the literature. In this paper we explore an alternative approach, based on a new algorithm variant specifically designed to match the features of the large-scale, fine-grained parallelism of GPUs, in which multiple input signals are processed at once. Comparative tests have been performed, using both parallel and sequential implementations of the new algorithm variant, in particular for a growing self-organizing network that reconstructs surfaces from point clouds. The experimental results show that this approach allows harnessing in a more effective way the intrinsic parallelism that the self-organizing networks algorithms seem intuitively to suggest, obtaining better performances even with networks of smaller size.Comment: 17 page

    Investigation of topographical stability of the concave and convex Self-Organizing Map variant

    Get PDF
    We investigate, by a systematic numerical study, the parameter dependence of the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf concave and convex learning with respect to different input distributions, input and output dimensions

    Wide Field Imaging. I. Applications of Neural Networks to object detection and star/galaxy classification

    Get PDF
    [Abriged] Astronomical Wide Field Imaging performed with new large format CCD detectors poses data reduction problems of unprecedented scale which are difficult to deal with traditional interactive tools. We present here NExt (Neural Extractor): a new Neural Network (NN) based package capable to detect objects and to perform both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first discriminated from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold and then they are classified as stars or as galaxies through diagnostic diagrams having variables choosen accordingly to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of "what an object is" (id est, it keeps all structures composed by more than one pixels) and performs the detection via an unsupervised NN approaching detection as a clustering problem which has been thoroughly studied in the artificial intelligence literature. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features, we use a NN to select the most significant features among the large number of measured ones, and then we use their selected features to perform the classification task. In order to optimise the performances of the system we implemented and tested several different models of NN. The comparison of the NExt performances with those of the best detection and classification package known to the authors (SExtractor) shows that NExt is at least as effective as the best traditional packages.Comment: MNRAS, in press. Paper with higher resolution images is available at http://www.na.astro.it/~andreon/listapub.htm

    Self Organized Dynamic Tree Neural Network

    Get PDF
    Cluster analysis is a technique used in a variety of fields. There are currently various algorithms used for grouping elements that are based on different methods including partitional, hierarchical, density studies, probabilistic, etc. This article will present the SODTNN, which can perform clustering by integrating hierarchical and density-based methods. The network incorporates the behavior of self-organizing maps and does not specify the number of existing clusters in order to create the various groups

    PCA Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes

    Full text link
    Multidimensional data distributions can have complex topologies and variable local dimensions. To approximate complex data, we propose a new type of low-dimensional ``principal object'': a principal cubic complex. This complex is a generalization of linear and non-linear principal manifolds and includes them as a particular case. To construct such an object, we combine a method of topological grammars with the minimization of an elastic energy defined for its embedment into multidimensional data space. The whole complex is presented as a system of nodes and springs and as a product of one-dimensional continua (represented by graphs), and the grammars describe how these continua transform during the process of optimal complex construction. The simplest case of a topological grammar (``add a node'', ``bisect an edge'') is equivalent to the construction of ``principal trees'', an object useful in many practical applications. We demonstrate how it can be applied to the analysis of bacterial genomes and for visualization of cDNA microarray data using the ``metro map'' representation. The preprint is supplemented by animation: ``How the topological grammar constructs branching principal components (AnimatedBranchingPCA.gif)''.Comment: 19 pages, 8 figure

    BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.</p> <p>Results</p> <p>In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.</p> <p>Conclusion</p> <p>BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. The BLProt software is available at <url>http://www.inb.uni-luebeck.de/tools-demos/bioluminescent%20protein/BLProt</url></p
    corecore