[Abriged] Astronomical Wide Field Imaging performed with new large format CCD
detectors poses data reduction problems of unprecedented scale which are
difficult to deal with traditional interactive tools. We present here NExt
(Neural Extractor): a new Neural Network (NN) based package capable to detect
objects and to perform both deblending and star/galaxy classification in an
automatic way. Traditionally, in astronomical images, objects are first
discriminated from the noisy background by searching for sets of connected
pixels having brightnesses above a given threshold and then they are classified
as stars or as galaxies through diagnostic diagrams having variables choosen
accordingly to the astronomer's taste and experience. In the extraction step,
assuming that images are well sampled, NExt requires only the simplest a priori
definition of "what an object is" (id est, it keeps all structures composed by
more than one pixels) and performs the detection via an unsupervised NN
approaching detection as a clustering problem which has been thoroughly studied
in the artificial intelligence literature. In order to obtain an objective and
reliable classification, instead of using an arbitrarily defined set of
features, we use a NN to select the most significant features among the large
number of measured ones, and then we use their selected features to perform the
classification task. In order to optimise the performances of the system we
implemented and tested several different models of NN. The comparison of the
NExt performances with those of the best detection and classification package
known to the authors (SExtractor) shows that NExt is at least as effective as
the best traditional packages.Comment: MNRAS, in press. Paper with higher resolution images is available at
http://www.na.astro.it/~andreon/listapub.htm