3,541 research outputs found

    Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for cross-species translational research

    Get PDF
    Mood disorders, such as major depressive disorder, are characterized by abnormal reward responsiveness. The Response Bias Probabilistic Reward Task (hereafter referred to as probabilistic reward task (PRT)) quantifies reward responsiveness in human subjects, and an equivalent animal assessment is needed to facilitate preclinical translational research. Thus, the goals of the present studies were to develop, validate and characterize a rat analog of the PRT. Adult male Wistar and Long–Evans rats were trained in operant testing chambers to discriminate between two tone stimuli that varied in duration (0.5 and 2 s). During a subsequent test session consisting of 100 trials, the two tones were made ambiguous (0.9 and 1.6 s) and correct identification of one tone was reinforced with a food pellet three times more frequently than the other tone. In subsequent experiments, Wistar rats were administered either a low dose of the dopamine D2/D3 receptor agonist pramipexole (0.1 mg kg−1, subcutaneous) or the psychostimulant amphetamine (0.5 mg kg−1, intraperitoneal) before the test session. Similar to human subjects, both rat strains developed a response bias toward the more frequently reinforced stimulus, reflecting robust reward responsiveness. Mirroring prior findings in humans, a low dose of pramipexole blunted response bias. Moreover, in rats, amphetamine potentiated response bias. These results indicate that in rats, reward responsiveness can be quantified and bidirectionally modulated by pharmacological manipulations that alter striatal dopamine transmission. Thus, this new procedure in rats, which is conceptually and procedurally analogous to the one used in humans, provides a reverse translational platform to investigate abnormal reward responsiveness across species

    Sustainability in astroparticle physics

    Get PDF
    The topic of sustainability is becoming increasingly important in research activities in astroparticle physics, both in existing and also in future instrument. At this year\u27s International cosmic ray conference (ICRC 2021) one session was dedicated to this topic. This publication will summarise the findings of this well-attended online session

    Spin-voltage-driven efficient terahertz spin currents from the magnetic Weyl semimetals Co<sub>2</sub>MnGa and Co<sub>2</sub>MnAl

    Get PDF
    Magnetic Weyl semimetals are an emerging material class that combines magnetic order and a topologically non-trivial band structure. Here, we study ultrafast optically driven spin injection from thin films of the magnetic Weyl semimetals Co2MnGa and Co2MnAl into an adjacent Pt layer by means of terahertz emission spectroscopy. We find that (i) Co2MnGa and Co2MnAl are efficient terahertz spin-current generators reaching efficiencies of typical 3d-transition-metal ferromagnets such as Fe. (ii) The relaxation of the spin current provides an estimate of the electron-spin relaxation time of Co2MnGa (165 fs) and Co2MnAl (102 fs), which is comparable to Fe (92 fs). Both observations are consistent with a simple analytical model and highlight the large potential of magnetic Weyl semimetals as spin-current sources in terahertz spintronic devices. Finally, our results provide a strategy to identify magnetic materials that provide maximum spin current amplitudes for a given deposited optical energy density

    Nanoscale noncollinear spin textures in thin Films of a D<sub>2d</sub> Heusler compound

    Get PDF
    Magnetic nano-objects, namely antiskyrmions and Bloch skyrmions, have been found to coexist in single-crystalline lamellae formed from bulk crystals of inverse tetragonal Heusler compounds with D2d symmetry. Here evidence is shown for magnetic nano-objects in epitaxial thin films of Mn2RhSn formed by magnetron sputtering. These nano-objects exhibit a wide range of sizes with stability with respect to magnetic field and temperature that is similar to single-crystalline lamellae. However, the nano-objects do not form well-defined arrays, nor is any evidence found for helical spin textures. This is speculated to likely be a consequence of the poorer homogeneity of chemical ordering in the thin films. However, evidence is found for elliptically distorted nano-objects along perpendicular crystallographic directions within the epitaxial films, which is consistent with elliptical Bloch skyrmions observed in single-crystalline lamellae. Thus, these measurements provide strong evidence for the formation of noncollinear spin textures in thin films of Mn2RhSn. Using these films, it is shown that individual nano-objects can be deleted using a local magnetic field from a magnetic tip and collections of nano-objects can be similarly written. These observations suggest a path toward the use of these objects in thin films with D2d symmetry as magnetic memory elements

    Prevalence of C9orf72 hexanucleotide repeat expansion in Greek patients with sporadic ALS

    Get PDF
    A total of 178 consecutive patients with definite sALS without frontotemporal dementia (FTD) were enrolled in this study, after complete clinical evaluation. A Repeat-Primed Polymerase Chain Reaction (RP-PCR) protocol was applied to detect the G4C2 repeats expansions. In the studied sALS patients, 5.06% (n = 9) carried the C9orf72 mutation. Among carriers, 2/3 of them were females and spinal onset accounted for 78% and bulbar for 22%, while the mean age of onset was about 60 years. Our study showed that the prevalence of C9orf72 repeat expansion in Greek sALS patients is similar to the overall frequency of the mutation in European populations. The pathogenic mutation remains a promising biomarker for genetic testing and targeted treatment

    Outlier detection with partial information:Application to emergency mapping

    Get PDF
    This paper, addresses the problem of novelty detection in the case that the observed data is a mixture of a known 'background' process contaminated with an unknown other process, which generates the outliers, or novel observations. The framework we describe here is quite general, employing univariate classification with incomplete information, based on knowledge of the distribution (the 'probability density function', 'pdf') of the data generated by the 'background' process. The relative proportion of this 'background' component (the 'prior' 'background' 'probability), the 'pdf' and the 'prior' probabilities of all other components are all assumed unknown. The main contribution is a new classification scheme that identifies the maximum proportion of observed data following the known 'background' distribution. The method exploits the Kolmogorov-Smirnov test to estimate the proportions, and afterwards data are Bayes optimally separated. Results, demonstrated with synthetic data, show that this approach can produce more reliable results than a standard novelty detection scheme. The classification algorithm is then applied to the problem of identifying outliers in the SIC2004 data set, in order to detect the radioactive release simulated in the 'oker' data set. We propose this method as a reliable means of novelty detection in the emergency situation which can also be used to identify outliers prior to the application of a more general automatic mapping algorithm. © Springer-Verlag 2007

    High-Dose, Extended-Interval Colistin Administration in Critically Ill Patients: Is This the Right Dosing Strategy? A Preliminary Study

    Get PDF
    In critically ill patients with otherwise untreatable nosocomial infection due to gram-negative bacteria susceptible only to colistin, a high-dose, extended-interval colistin dosing regimen is, according to the pharmacokinetic/pharmacodynamic behavior of the drug, associated with low renal toxicity and high efficacy
    • 

    corecore