229 research outputs found

    Sex hormones in allergic conjunctivitis: altered levels of circulating androgens and estrogens in children and adolescents with vernal keratoconjunctivitis

    Get PDF
    PURPOSE: Vernal keratoconjunctivitis (VKC) is a chronic allergic disease mainly affecting boys in prepubertal age and usually recovering after puberty. To evaluate a possible role of sex hormones in VKC, serum levels of sex hormones in children and adolescents with VKC were assessed. METHODS: 12 prepubertal and 7 early pubertal boys with active VKC and 6 male patients with VKC in remission phase at late pubertal age and 48 healthy age and sex-matched subjects were included. Serum concentration of estrone, 17 beta-estradiol, dehydroepiandrosterone-sulfate, total testosterone and free testosterone, dihydrotestosterone (DHT), cortisol, delta-4-androstenedione, follicle-stimulating hormone, luteinizing hormone, and sex-hormones binding globuline (SHBG) were evaluated. RESULTS: Serum levels of Estrone were significantly increased in all groups of patients with VKC when compared to healthy controls (P < 0.001). Prepubertal and early pubertal VKC showed a significant decrease in DHT (P = 0.007 and P = 0.028, resp.) and SHBG (P = 0.01 and P = 0.002, resp.) when compared to controls and serum levels of SHBG were increased in late pubertal VKC in remission phase (P = 0.007). CONCLUSIONS AND RELEVANCE: VKC patients have different circulating sex hormone levels in different phases of the disease and when compared to nonallergic subjects. These findings suggest a role played by sex hormones in the pathogenesis and/or activity of VKC

    Rare diseases of the anterior segment of the eye: update on diagnosis and management

    Get PDF
    This special issue is focused on the current approaches used to identify and manage rare diseases of the anterior segment of the eye, which range from congenital to acquired disorders that are caused by ocular or systemic conditions and often have consequences that extend beyond the anterior segment of the eye

    WILSON PLOT METHOD TO OBTAIN NUSSELT NUMBER FOR A PLATE HEAT EXCHANGER

    Get PDF
    Plate heat exchangers are devices commonly used in industry due to their high efficiency and ease cleaning. Although its first use was in food sector, nowadays this equipment can be found in most industrial segments, like chemistry and oil industry. Due the facility of fabrication, the corrugated gasket plate heat exchanger is amply utilized in those segments, however, its mathematical analysis present non-agreement between the authors, because of the different plate models and operation settings. Thus, the main objective of this work is to study the application of the Wilson-Plot method to analyze the thermal behavior of an elemental plate heat exchanger, and verify if the operation temperature has significant influence in the thermal behavior of the plate heat exchanger

    Blocking transport resonances via Kondo entanglement in quantum dots

    Get PDF
    Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we quantitatively show an undiscovered side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic cotunneling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global \SUT\ \otimes \SUT\ symmetry of a carbon nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.Comment: 9 pages, 4 figure

    Efficacy of polyunsaturated fatty acids (PUFAs) on impulsive behaviours and aggressiveness in psychiatric disorders

    Get PDF
    It is the focus of increasing interest to investigate the effects of long-chain n-3 and long-chain n-6 polyunsaturated fatty acids (LC n-3 PUFAs; LC n-6 PUFAs) on psychiatric symptoms in a transdiagnostic perspective. There is some evidence that low levels of LC n-3 PUFAs and a higher ratio of LC n-6 to LC n-3 PUFAs in plasma and blood cells are associated with aggressive and impulsive behaviours. Therefore, implementation of LC n-3 PUFAs may produce positive effects on hostility, aggression, and impulsivity in both psychiatric and non-psychiatric samples across different stages of life. A possible mechanism of action of LC n-3 PUFAs in conditions characterized by a high level of impulsivity and aggression is due to the effect of these compounds on the serotonin system and membrane stability. Studies that evaluated the effects of LC n-3 PUFAs on impulsivity and aggressiveness indicated that addition of rather low doses of these agents to antipsychotic treatment might reduce agitation and violent behaviours in psychosis, attention deficit hyperactivity disorder, personality disorders, and impulsive control and conduct disorders. The present review is aimed at examining and discussing available data from recent trials on this topic

    Targeting the medulloblastoma: A molecular-based approach

    Get PDF
    Background: The lack of success of standard therapies for medulloblastoma has highlighted the need to plan a new therapeutic approach. The purpose of this article is to provide an overview of the novel treatment strategies based on the molecular characterization and risk categories of the medulloblastoma, also focusing on up-to-date relevant clinical trials and the challenges in translating tailored approaches into clinical practice. Methods: An online search of the literature was carried out on the PubMed/MEDLINE and ClinicalTrials.gov websites about molecular classification of medulloblastomas, ongoing clinical trials and new treatment strategies. Only articles in the English language and published in the last five years were selected. The research was refined based on the best match and relevance. Results: A total 58 articles and 51 clinical trials were analyzed. Trials were of phase I, II, and I/II in 55%, 33% and 12% of the cases, respectively. Target and adoptive immunotherapies were the treatment strategies for newly diagnosed and recurrent me-dulloblastoma in 71% and 29% of the cases, respectively. Conclusion: Efforts are focused on the fine-tuning of target therapies and immunotherapies, including agents directed to specific pathways, engineered T-cells and oncoviruses. The blood-brain barrier, chemoresistance, the tumor microenvironment and cancer stem cells are the main translational challenges to be overcome in order to optimize medulloblastoma treatment, reduce the long-term morbidity and increase the overall survival. (www.actabiomedica.it)

    An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings

    Get PDF
    Energy saving in buildings is one of most important issues for European countries. Although in the last years many studies have been carried out in order to reach the zero-consumption house the energy rate due to passive solar heating could be further enhanced. This paper proposes a method for increasing the energy rate absorbed by opaque walls by using a two phase loop thermosyphon connecting the internal and the external façade of a prefabricated house wall. The evaporator zone is embedded into the outside facade and the condenser is indoor placed to heat the domestic environment. The thermosyphon has been preliminary designed and implanted into a wall for a prefabricated house in Italy. An original dynamic thermal model of the building equipped with the thermosyphon wall allowed the evolution of the indoor temperature over time and the energy saving rates. The transient behaviour of the building has been simulated during the winter period by using the EnergyPlusTM software. The annual saving on the heating energy is higher than 50% in the case of a low consumption building

    Microenvironment in neuroblastoma: Isolation and characterization of tumor-derived mesenchymal stromal cells

    Get PDF
    Background: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches

    An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings

    Get PDF
    Energy saving in buildings is one of most important issues for European countries. The 40% of the total European energy consumption is due to building Heating and conditioning. Although in the last years many studies have been carried out in order to reach the zero-consumption house by means of passive solar heating, ventilation or thermal insulation, the energy rate due to passive solar heating could be further enhanced. This paper proposes a method for increasing the energy rate absorbed by opaque walls by using a two phase loop thermosyphon connecting the internal and the external façade of a prefabricated house wall. The evaporator zone is located on the outside face and it is irradiated by the sunlight while the condenser zone is placed on the internal face and releases heat to the domestic environment. The temperature differences between the internal and external wall facades are lower than 30 K and the heat fluxes at the evaporator change during the day from 2 up to 7 x 104 W/m2 K. The thermosyphon has been preliminary designed and implanted into a wall for a prefabricated house in Italy. A thermal model of building equipped with the thermosiphon wall has been used in order to evaluate the impact in terms of energy saving and thermal comfort in a real prefabricated low consumption house. The transient behaviour of the building has been simulated day by day during the winter period by using the EnergyPlusTM software. This solution enhances the thermal comfort of the building by keeping the indoor temperature close to the thermal comfort standard for most of the day. The annual saving on the heating energy is higher than 50% in the case of a low consumption buildin

    Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry

    Get PDF
    The presence of emerging contaminants such as pharmaceuticals in aquatic means presents as a serious threat, since their real consequences for the environment and human health are not well known. Therefore, this work consisted of preparing and characterize sludge-derived activated carbons (beverage sludge activated carbon – BSAC and acid-treated beverage sludge activated carbon - ABSAC) to investigate their use in the pharmaceuticals adsorption in aqueous media. The morphology study has demonstrated that ABSAC, unlike BSAC, exhibited an abundant porous structure, with smaller particles and bigger roughness. Adsorption results indicated that the ABSAC was more effective that BSAC, since it presented superior surface area (642 m2 g-1) and total pore volume (0.485 cm3 g-1) values. Pseudo-second-order kinetic model was more suitable to predict experimental data. Sips model best described the equilibrium data, with maximum adsorption capacities of 145, 105, and 57 mg g-1 for paracetamol, ibuprofen, and ketoprofen, respectively. Besides, the sludge-derived adsorbent was highly efficient in the treatment of a simulated drug effluent, removing 85.16% of the pharmaceutical compounds. Therefore, the material prepared in this work possesses intrinsic characteristics that make it a remarkable adsorbent to be applied in the treatment of pharmaceutical contaminants contained in industrial wastewater
    corecore