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Abstract. Background: The lack of success of standard therapies for medulloblastoma has highlighted the
need to plan a new therapeutic approach. The purpose of this article is to provide an overview of the novel
treatment strategies based on the molecular characterization and risk categories of the medulloblastoma,
also focusing on up-to-date relevant clinical trials and the challenges in translating tailored approaches into
clinical practice. Methods: An online search of the literature was carried out on the PubMed/MEDLINE
and ClinicalTrials.gov websites about molecular classification of medulloblastomas, ongoing clinical trials
and new treatment strategies. Only articles in the English language and published in the last five years were
selected. The research was refined based on the best match and relevance. Resulzs: A total 58 articles and 51
clinical trials were analyzed. Trials were of phase I, II, and I/I in 55%, 33% and 12% of the cases, respectively.
Target and adoptive immunotherapies were the treatment strategies for newly diagnosed and recurrent me-
dulloblastoma in 71% and 29% of the cases, respectively. Conclusion: Efforts are focused on the fine-tuning of
target therapies and immunotherapies, including agents directed to specific pathways, engineered T-cells and
oncoviruses. The blood-brain barrier, chemoresistance, the tumor microenvironment and cancer stem cells are
the main translational challenges to be overcome in order to optimize medulloblastoma treatment, reduce the
long-term morbidity and increase the overall survival. (www.actabiomedica.it)

Key words: Adoptive Immunotherapies; Medulloblastoma; Sonic Hedgehog Medulloblastoma; Target
Therapy; Wingless Medulloblastoma.

Background Current multimodal therapies, including surgery

and radiochemotherapy, lengthens the long-term
Medulloblastoma (MB) is the most common survival to 60-80%, but 33% of children diagnosed

malignant pediatric tumor, accounting for 15-20% of die in five years, the median survival for recurrent

childhood brain neoplasms.! MB usually occurs in the
posterior fossa and has a high risk for early leptome-
ningeal spread at first diagnosis.

MBs being less than twelve months. Treatment also
leads to severe and debilitating long-term complica-
tions.”®
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The persistence of high mortality rates and severe
side effects of standard treatments has highlighted the
need for more effective and sophisticated therapeutic
strategies.

Advanced molecular research and whole-genome
sequence analysis in many neurological and neuroon-
cological pediatric central nervous system (CNS) pa-
thologies® has made it possible to deepen the under-
standing of the heterogeneity and genome make-ups
of MBs, resulting in the novel classification under-
pinned on different molecular features.'*s

The subgroups have substantial biological differ-
ences, express specific markers of prognosis leading to
a more accurate risk stratification, and underly distinct
deregulated signaling pathways, exploitable as poten-
tial therapeutic targets.* '

Breakthroughs of risk-adapted interventions
based on molecular characteristics, including target
agents, immunotherapies and stem-cell strategies,
have made it possible to plan an effective personalized
approach and have reduced long-term morbidity.

In this article, we outline the molecular landscape
of MB subtypes, along with prognostic markers, and
examine the ongoing transition toward the innovative
molecularly targeted strategies; focusing on the thera-
peutic options currently available, most relevant clini-
cal trials, and future challenges in the management of
newly diagnosed and recurrent MBs.

Methods

An online search of the literature was conducted
on the PubMed/MEDLINE (https://pubmed.ncbi.
nlm.nih.gov) platform and the ClinicalTrials.gov web-
site (https://clinicaltrials.gov). For the PubMed/MED-
LINE search the MeSH (Medical Subject Headings)
database has been used and the terms “Target Ther-
apy”, “Molecular Classification”, “Adoptive Immuno-
therapy”, “Cell-Based Therapy”, “Stem Cell Therapy”
and “Tailored Therapy” have been chosen; combined
with the following keywords: “Pediatric Brain Tumors”,
“Pediatric Central Nervous System tumors”, “Brain tu-
mors in childhood” and “Medulloblastoma”.

Only articles in English or translated into Eng-
lish, published in the last five years, and concerning

neuro-oncology were selected and then sorted based
on the best match and relevance.

On the ClinicalTrials.gov website, the search
terms were “Medulloblastoma”, “Pediatric Malignant
Brain Tumor”, “Pediatric Brain Cancer” and “Pediatric
central nervous system Neoplasms”. No restrictions for
drug name, study phase and recruitment status country
have been applied.

A descriptive analysis has been reported about the
most relevant studies of the overall research.

Results
1 Molecular classification of MBs

Based on histopathological characteristics, the
World Health Organization (WHO) classified MBs
in classic, desmoplastic-nodular, with extensive nodu-
larity, anaplastic, and large cell types.”

Several cytogenetic studies and the increased un-
derstanding of the pathophysiology of several CNS
pediatric pathologies ** and, within this context, the
biological heterogeneity of MBs have been translated
into classification refinements.

The four subtypes, based on genome sequenc-
ing, DNA analysis and phenotypic profiles, are as it
follows: wingless (WNT), sonic hedgehog (SHH),
Group 3 and Group 4.1

This novel molecular subgrouping has potential
prognostic implications, so the current risk stratifica-
tion divides the MBs in “low”, “standard”, “high”, and
“very high risk”, based on age, presence of metastases,
histologic phenotype, prognostic molecular markers,
and especially, molecular subtype.*®*® Table 1 and 2
report the molecular and prognostic classification of
medulloblastoma (Table 1 and 2).

1.1 WNT-MB:s

WNT proteins play a central role in cell growth,
proliferation, motility and homeostasis. The pathway
is triggered by B-catenin protein and various kinases as
transduction enhancers.

In 85-90% of the cases, the WNT-MB subgroup
harbors a point mutation in exon 3 of the CTNNB1 gene
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Table 1. Molecular Classification of Medulloblastoma!6-'®%-2532 82

o TP53 (12.5 %)

SMO (9%)
MYCN (8%)

o
o
o
o SUFU (10 %)
)
o
o GLI2 (5%)

o SMARCA4
(11%)
o OTX2 (10 %)

Molecular Subtype | WNT SHH Group 3 Group 4
Proportion of MBs | 10-15% 25% 25% 35%
Age Distribution 10-12 years old Bimodal, <5->16 years old | <3 years old Children
Male/Female Ratio 1:1 1:1 2:1 3:1
. Midline, Fourth Ven- Cerebellar Hemispheres, Midline, Fourth Midline, Fourth Ven-
Location . . . R
tricle Vermis Ventricle tricle
Histology Classic, rarely LCA DN, Classic, LCA Classic, rarely LCA | Classic, rarely LCA
Metastasis 5-10% 15-20% 45% 30-40%
Recurrence Rare Local Metastatic Metastatic
Driver Genes o CTNNB1 (90%)- TERT (83%) o GFI1/GFI1B o KDMBG6A (13 %)
WNT PTCHI1 (45%) -SHH (30 %) o SNCAIP (10%)
o DDX3X (50 %) TP53 (13%) o MYC (10-20%) | o MYCN (6%)
o SMARCA4 (25%) o PVT1 (12 %) o CDKG6 (5%)

o GFI1/GFI1B (5-10

Chromosome Aber-

cation Monosomy 6 (>80%) Loss 9q (PTCH1 locus) Isochromosome 17q | Isochromosome 17q
MYC status + + - -
5-year Survival >90% 70% 40-60% 75%

DN: Desmoplastic-Nodular; LCA: Large Cell/Anaplastic; SHH: sonic hedgehog; WNT: wingless

Table 2. Prognostic Classification for Medulloblastoma®

Risk Categories Molecular Profile 5—yef;1 v overall
survival

Non-metastatic WNT-MBs

Low Risk >90%
Localized Group 4-MBs, with loss of chromosome 11 and gain of chromosome 17
Non-metastatic SHH-MBs without p53 mutation

Standard Risk Group 3 non-MYC amplified 76-90%
Group 4 without p53 mutation and loss of chromosome 11
Metastatic SHH-MBs MYC amplified

High Risk 50-75%
Metastatic Group 4
Metastatic Group 3

Very High Risk <50%
SHH-MBs MYC amplified with p53 mutation

MBs: Medulloblastomas; SHH: Sonic Hedgehog; WNT: Wingless

which renders the B-catenin resistant to degradation and
leads to an upregulation of the WNT pathway.!s*

In 70-80% of the cases, the monosomy/diploidy
of chromosome 6 and the overexpression of MYC e
MYCN proteins, markers of worse prognosis, results
in the activation of the WNT signalings.***

Less frequent driving genetic alterations concern
the DDX3X, SMARCA4 and p53 genes, with a fre-
quency of 50%, 26% and 13%, respectively.*

WNT-MBs are the least common, accounting
for 10%, with a peak incidence in 10-12 years, and al-

most equal male/female ratio.”” More than 90% have a
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classic histology, location in the midline of the fourth
ventricle and relatively rare metastasis (5-10%)*.

This group has the better prognosis, with more
than 90% of 5-year event-free survival.

1.2 SHH-MBs

The hedgehog (HH) signaling pathway is in-
volved in the proliferation of neuronal precursor cells
and is fundamental for tissue maintenance and regen-
eration.

HH ligands bind the receptor protein patched
homolog 1 (PTCH1) and activate the intracellular
cascade of smoothened (SMO) proteins.

Among mammalian homologs of the hedge-
hog, the aberrant upregulation of the SHH signaling
pathway promotes tumor formation in about 30% of
MBS.18,23,24, 34

The typical activating mutations for the SHH
subtype include the TERT in 83%, PTCHI in al-
most 45%, the modulator suppressor of fused homolog
(SUFU) in 10%, and SMO in 9% of the cases.***

In the SHH signaling pathway, SMO activates
the downstream target gene FOXM1, a GLI tran-
scription factor, which activates genes for mitosis, in-
cluding PLK1 and MYCN.

The expression at a high level of FOXM1/PLK1,
MYCN and GLI 1 and 2 are also prognostic markers
and potential therapeutic targets.”**

Other molecular characterizations typical of
SHH-MBs are in genes coding for ErbB family pro-
teins, such as EGFR and ERBB3, deregulation of the
p53 and PI3K/AKT/mTOR pathway and the deletion
of chromosome 9q (PTCHI1 locus), which modifies
the transcription of CDKN2A/2B, known as tumor
suppressor factors.

In many cases, these mutations suggest the con-
comitant presence of a hereditary genetic disease such
as Gorlin syndrome, associated with mutations affect-
ing the PTCH1 and SUFU genes. The SHH sub-
group, 25% of all cases, has a bimodal age distribution,
less than 3 and more than 16 years, with equivalent
sex ratio and the majority has nodular/desmoplastic
histology.®* They are frequently located in cerebellar
hemispheres and vermis, and metastasis are not com-

mon.16,34

SHH-MBs have an intermediate prognosis with
5-year overall survival of 70% after standard treat-
ment.®

1.3 Group 3

Group 3 MBs represent 25% of all cases and are
mostly characterized by amplification of various pro-
to-oncogenes: GFI1/GFI1B (30%), MYC (16.7%),
PVT1 (12%), SMARCA4 (11%) and OTX2 (10%).®

Additionally, fibroblast growth factor, tyrosine
kinase receptors, and their consequent downstream
signaling pathways, such as PI3K/AKT and MAPK/
ERK, are frequently deregulated. Isochromosome 17q
is present in 25% of SHH cases and among those with
MYC amplification (10%-17%), are strong indicators
of poor prognosis.

Group 3 is limited to children (3-5 years old),
with male predominance and classic, anaplastic or
large-cell histology."

This is the group with the worst prognosis, as me-

tastases are present in 45% of the cases.'**

1.4 Group 4

Group 4 is the most common, accounting for
35% of MBs, with no age prevalence and high male
predominance. Isochromosome 17q occurs in 80% of
the cases and the mutation of the KDM6A gene is
frequently detached (13%). The KDM6A encodes for
a histone demethylase enzyme and is located on the
X-chromosome, explaining the male predominance of
Group 4.

Additionally, MYCN, cyclin dependent kinase 6
(CDK6) and NOTCH1, 2, 3 are commonly ampli-
fied. The expression of the NOTCH network is di-
rectly linked to therapy resistance, because it regulates
the tumor’s immune response and maintains the tumor
microenvironment. The overexpression of cytokine re-
ceptors and their downstream signaling, such as the
JAK-STAT pathway, estrogen-related receptor y, and
Fc receptors are found in this varied genomic land-
scape, not yet fully explored.

However, this subtype has an intermediate prog-
nosis, like the SHH-MBs. However, leptomeningeal

spread occurs more frequently (30-40%).1¢ 1%
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2 Target Therapy
2.1 HH inhibitors

The most investigated target approach concerns
the inhibitors of the HH pathway and the first one
discovered was cyclopamine. It binds the transmem-
brane domain of SMO and definitively suppresses the
growth and proliferation of the tumor’s cells.'**

Although having excellent premises, cyclopamine
did not show efficacy when applied in vivo, but led to
the development of many molecules with the same
drug-like properties. They were vismodegib, saridegib,
sonidegib and erismodegib, all having improved phar-
macokinetics and lower toxicities.” * Vismodagib, an
SMO antagonist, was approved by the FDA and test-
ed in some phase I and II clinical trials. Many of these
are ongoing and are evaluating the efficacy of vismo-
degib combined with standard chemotherapy in chil-
dren and adults diagnosed with recurrent or refractory
MBs (#NCT01601184, #NCT01878617). A phase
IT study on vismodegib, conducted in 2005, enrolled
43 patients (12 affected by SHH-MBs) and showed a
6-month progression-free survival in 41% of the SHH
patients (#NCT01239316).

Sonidegib and ZSP1602, orally bioavailable
drugs inhibiting the SMO pathway, are under clinical

evaluation.
2.2 Bromodomain inhibitors (BET)

A recent therapeutic strategy involves the bro-
modomain proteins, which bind histones and modu-
late gene transcription. BET inhibitors, such as JQ1
and BMS-986158, have been tested in many clini-
cal trials in order to evaluate their safety and toler-
ability profiles® (#NCT03936465). In the BET fam-
ily, the BRD4 protein is being evaluated as potential
therapeutics target against advanced MYC-amplified
MBS.46,47

2.3 Tyrosine kinase inhibitors (TKIs)
Tyrosine kinases enzymes catalyze the phospho-

rylation of tyrosine residues on specific receptors, ac-
tivating the intracellular transduction pathways. TKIs

target oncogene growth factor receptors, including the
epidermal growth factor (EGFR), the platelet-derived
growth factor (PDGFR), the fibroblast growth factor
(FGFR) and the hepatocyte growth factor (HGFR)
receptors, which are involved in the cell’s maintenance,
differentiation and metastasis.

MB TKIs therapy involves imatinib, gefitinib, la-
patinib, dasatinib, sorafenib, sunitinib and erlotinib.

Imatinib, a PDGFR blocker, prevents the migra-
tion and invasion of MB cells; it has been investigated
in several clinical trials, showing good ability for over-
coming the blood-brain barrier (BBB).

Erlotinib has been proved in two clinical trials,
combined with chemoradiotherapy, especially for re-
current MBs (#NCT00077454, #NCT00360854).

A phase I study demonstrated the efficacy of sa-
volitinib, inhibitor of HGFR, in primary brain tumors,
including recurrent MBs (#NCT03598244).

Many phase II clinical trials are focusing on pa-
tients carrying FGFR mutations by administering
erdafitinib, an oral pan-FGFR inhibitor with promis-
ing results (#NCT03210714).

2.4 PI3K/AKT/mTOR inhibitors

The PI3K/AKT/mTOR pathway controls cell
growth and dissemination. Target agents directed
against PI3K have given satisfactory results.

The PI3K and mTOR signaling pathways in-
hibitors, such as fimepinostat (#NCT03893487) and
samotolisib (#NCT03213678) are tested for pediatric
CNS tumors.

Wojtalla et al. reported the antitumoral potential
of combination therapy involving the humanized anti-
IGF-1R antibody, R1507, with PIK75, a class IA PI3K

inhibitor, in recurrent M Bs and neuroblastomas.*
2.5 CDK4/CDK6/pRB inhibitors

The pRB plays a fundamental role in cell-cycle ar-
rest and apoptosis. The dysregulation of the pRB signal-
ing pathways is found in many MBs, resulting in clonal
cell expansion. The pRB inactivity is caused by the over-
expression of CDK4/CDXKG6 suppressing agents.

The restoration of pRB activity is an effective ra-
tional strategy.



84

S. Luzzi, , A. Giotta Lucifero, I. Brambilla, et al.

Novel agents directed against CDK4/CDKS,
such as ribociclib and palbociclib, proved to have
strong antitumor eflicacy, also in combination with the
SMO inhibitor, sonidegib (#NCT03434262).

Palbociclib is evaluated in a phase I clinical trial
in combination with irinotecan and temozolomide for
children with central nervous system (CNS) tumors
(#NCT03709680).

Ribociclib and everolimus is tested in chil-

dren affected by recurrent and refractory MBs
(#NCT03387020).

2.6  MDM2/MDM4/p53 inhibitors

p53 is a fundamental protein regulating the cell
cycle and inducing cell apoptosis. It is mutated in al-
most 40% of MBs, facilitating the proliferation and
spread of the tumor. p53 dysregulation is found in the
WNT and SHH groups, resulting in a 40% reduction
of 5-year survival and is considered one of the leading
causes of treatment failure. MDM2/4, which induce
p53 degradation and negatively regulate its activity, are
also promising therapeutic strategies.”

Nutlin-3 selectively binds MDM2, inhibiting p53
degradation. In 2012, Annette et al. proved in vitro and
in vivo the antitumor activity of nutlin-3 against MBs.®

2.7  Chemokines inhibitors

Chemokines are pivotal in tumor growth and in
sustaining the tumor-related microenvironment.

CXCL12 chemokine and its CXCR4 receptor are
overexpressed in many CNS tumors, and significantly
higher in MBs.

In 2012, Sengupta et al. demonstrated the pres-
ence of CXCR4 in WNT and SHH-MBs, but only
SHH subtype harbors the CXCR4 overexpression.™

AMD3100 (Plerixafor), a CXCR4 antagonist,
has been tested in one phase I/II clinical trial, com-
bined with chemoradiotherapy, for several CNS tu-
mors (#NCT01977677).

2.8 Anti-Angiogenesis agents

MBs are characterized by a thriving pathological
angiogenesis and, consequently, potential downstream

targets are the VEGF/VEGFR, copiously expressed
in WNT and SHH-MBs. Anti-angiogenic therapies
applied for MB involve bevacizumab, a humanized
IgG1 monoclonal antibody directed against VEGF-A,
in combination with conventional chemotherapies®™

(#NCT00381797, #NCT01217437).
2.9 Topoisomerase inhibitors

Topoisomerase I and II are enzymes involved in
DNA replication, cellular senescence and apoptosis.
Irinotecan, topotecan and camptothecan are directed
against these enzymes.

Topotecan and irinotecan have the same phar-
macodynamics, but different pharmacokinetics; to-
potecan easily crosses the BBB, demonstrating, in
many stand-alone clinical trials, (#NCT00112619,
#NCT00005811) or also in combination with chemo-
therapy (#NCT02684071), increased survival.**

Indimitecan and Indotecan (LMP 400), both
topoisomerase inhibitors, are still under evaluation.

3 Adoptive Immunotherapies
3.1 Checkpoint inhibitors (CPls)

The success of CPIs to augment the immunologi-
cal response against many solid tumors has generated
interest in the applicability also for MBs, especially in
the advanced stages.

Two anti-PD-1 agents, pembrolizumab and
nivolumab, are under evaluation for pediatric tumors.
An ongoing phase I clinical trial is assessing the safety
and eflicacy of pembrolizumab in progressive and re-
current tumors, including MBs (#NCT02359565); an-
other phase Il trial is evaluating the efficacy of nivolum-
ab in pediatric brain tumors (#NCT03173950).

The B7 homolog 3 (B7-H3), an antibody im-
mune checkpoint inhibitor directed against T-cells,
has been tested in a phase I trial in combination
with radiotherapy, and for advanced metastatic MBs
(#NCT00089245).

APX005M, an IgG monoclonal antibody di-
rected at CD40, has been designed to stimulate the
anti-tumor immune response. It has been tested in a
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phase I pediatric trial (#NCT03389802) in patients
with recurrent and refractory primary malignant brain
tumors and has also shown an excellent success rate in
combination with nivolumab.

Indoleamine 2.3-dioxygenase (IDO) is an en-
zyme, overexpressed in many tumors, which regulates
the tumor microenvironment and enhances immune
escape decreasing T-reg activity. Indoximod, an IDO
inhibitor, has been studied in two different phase I/ 11
pediatric trials with concomitant use of temozolomide

(#NCT02502708, #NCT04049669).
3.2 Engineered CAR-T and NK cells

Engineered T-cells expressing artificial chimeric
antigen receptors (CAR-T) are largely employed in
neuro-oncology, posing challenges in finding tumor-
associated antigens.

HER2 is usually overexpressed in MBs, and pre-
clinical studies are testing the efficacy of HER2-CAR
T-cells in mouse models™.

At the Seattle Children’s Hospital the Brain-
Child-01 phase I trial was conducted, which tested
autologous CD4+/CD8+ T-cells lentivirally trans-
duced to express HER2 and EGFRt (truncated form
of EGFR) CARs, delivered by catheter in the tumor
resection cavity or ventricular system, for recurrent or
refractory HER2+ CNS tumors (#NCT03500991).

Another phase I trial proved the EGFR806 and
EGFRt CAR T-cells for patients with recurrent/re-
fractory EGFR+CNS tumors (#NCT03638167).

NK cells are fundamental in immune response,
recognizing tumor cells without specific antigens. In
an ongoing phase I clinical trial, propagated ex vivo
with artificial antigen-presenting cells, NK cells have
been administered directly into the ventricles in recur-
rent and refractory malignant posterior fossa tumors

#NCT02271711).
3.3 Oncolytic viruses

The main advantages of oncolytic viruses (OVs)-
based immunotherapy consist in the selective replica-
tion within the tumor cells, inducing lysis of tumor
cells and releasing neoantigens to the tumor microen-
vironment, thus activating the immune cascade.

For pediatric brain tumors, several types of OV's
have been investigated.

Genetically engineered herpes simplex viruses
(HSV), rRp450, G207 and M002 revealed antitumor
activity and prolonged survival in mice xenografts of
aggressive MBs cells.”

A recruiting phase I trial evaluated the engineered
HSV G207 for children with refractory cerebellar
brain tumors® (#NCT03911388).

The measles virus expressing thyroidal sodium io-
dide symporter (MV-NIS) has been engineered in an
ongoing phase I study testing its efficacy in pediatric
recurrent MBs. MV-NIS is administered intrathecal-
ly* (#NCT02962167).

The highly attenuated recombinant polio/rhi-
novirus (PVSRIPO) recognizes the CD155 receptor
expressed in the MBs tumor cell microenvironment.
It is used in a phase I pediatric trial, administered by
the intracerebral catheter for WHO grade III and IV
malignant brain tumors (#NCT03043391).

Phase I of the PRIME clinical trial evaluates
a two-component cytomegalovirus specific multi-
epitope peptide vaccine (PEP-CMYV), administered
after temozolomide, in pediatric patients with recur-
rent MBs and high-grade gliomas (#NCT03299309).

4 Chlinical Trials on MB Therapies

Out of 51 clinical trials, 55% were phase I, 33%
phase II and 12% phase I/IT (Graph 1). Target thera-
pies and adoptive immunotherapies were tested in
71% and 29% of them, respectively (Graph 2). Table 3

summarizes the clinical trials on new therapeutic strat-

egies for MBs (Table 3).

Discussion

Despite the refinements in neurosurgical tech-
niques, concerning both neuro-oncology and other
fields, present standard of care for MBs, including
maximal surgical resection followed by adjuvant radio
and chemotherapy protocols, fails to recognize hetero-
geneity within MB subtypes, resulting in low efficacy,

high recurrence rate and risk of long-term toxicity.®
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Study Phase of Clinical Trials

12%

55%
33%

® Phase 2

mPhase 1,2

mPhase 1

Graph 1: Pie graph showing the distribution of the clinical tri-
als according to the study phase.

Type of Therapies

= Target Therpies = Adoptive Immunotherapies

Graph 2: Pie graph showing the distribution of the clinical tri-
als according to types of therapy.

Challenges come from the need for distinguish-
ing molecular subgroups and identifying patients for
whom a personalized treatment approach would be
recommended.

1 Molecular Subgroup-Based Tailored Strategies
1.1 WNT-MBs

WNT signaling was the first identified. However,
no drugs directed against this pathway have been ap-
proved as an alternative to standard therapy.

Only two molecules have been tested, namely
norcantharidin, which blocks the WNT pathway, and
lithium chloride, which stabilizes B-catenin and re-
duces MB progression.®

The reason for the lack of success in inhibiting
the WNT pathway lies in the fact that it seems to be
involved in vascular dysfunction and BBB disrupting,
therefore increasing the penetration of drugs. Fur-
ther issues are the various developmental processes,
including physiological tissue regeneration and bone
growth.**” As a matter of fact, inhibition would result
not only in reduced chemosensitivity, but also would
have long-term complications. No further targeted
therapies have been developed, and clinical trials have
focused especially on decreasing the doses of radio-
chemotherapy for low- or standard-risk WNT-MBs
(#NCT01878617, #NCT02724579).

1.2 SHH-MB:s

Among the target therapies, agents directed
against the SHH pathway gave the most promising
results. Most SHH-MB patients harbor PTCH1 or
SMO mutations. SMO inhibitors, primarily vismod-
egib, demonstrated their efficacy in several trials.®®

Mutations of the SMO downstream pathway,
such as SUFU or GLI1, make the SMO inhibitors in-
effective. Several clinical trials increased the develop-
ment of drugs directed against BET, SUFU, ¢-MET,
CDK4/ 6 (ribociclib) and MET (foretinib) inhibitors,
used in combination for overcoming therapeutic re-
sistance.

In SMO-mutated MBs, PI3K signaling is usually
increased, and the combined use of SHH-inhibitors
with PI3K blockers also has a rationale.®” Finally,
planning tailored therapies, made with a combina-
tion of HH inhibitors and TKIs, proteasome and
chemokine inhibitors, may present a future opportu-
nity in the management of this tumor group.
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1.3 Group 3

The dismal prognosis occurring in Group 3 MBs,
made an urgent development of targeted therapies
necessary.” The increased expression level of the MYC
gene, found in about 10-20 % of Group 3 patients,
confers a very poor outcome. FDA approved peme-
trexed and gemcitabine along with standard chemo-
therapy for this category.

Many clinical trials also demonstrated the efhi-
cacy of palbociclib, CDK4/6 inhibitor, PI3K inhibitor,
BRD4 inhibitor and anti-vascularization therapies in
monotherapy or in association with standard treat-
ment for MBs of Group 3.

Alternative strategies, applicable to this subtype,
include immunotherapies, mainly those that exploit
engineered T and NK cells.

1.4 Group 4

The genomic heterogeneity of Group 4 is not
clearly understood, and this constitutes the major limit
in the development of target therapies.

It has been mainly immunotherapies, with CPlIs,
engineered T and NK cells and OVs that have been
tested, with results that are still quite limited.

For those patients with relative activation of
NOTCH signaling, a novel therapeutic opportunity
is the administration of MK-0752 and R0O4929097,
both inhibitors of transcription of the NOTCH

genes.”!

2 Ongoing Challenges and Future Prospects

The main limitations in the development of an ef-
fective MB tailored approach are primarily the over-
coming of the BBB, the tumor microenvironment and
the tumor stem cell response.

The route of drug administration is still an issue in
the management of these therapies.

In 2016, Phoenix et al. highlighted that the gene
expression patterns applied to tumor subtypes deter-
mines the configuration of the BBB, which avoids
drug penetration and reduces chemoresponsiveness.®
WBT-MBs seem to have a better prognosis because

of the presence of fenestrated vessels facilitating the
penetration of drugs.*

Concerning strategies aimed at overcoming the
BBB, possible routes of administration are intrathecal,
stereotactic or endoscopic. These routes make it possi-
ble to deliver drugs directly into the tumor cavity, and
as for other neurological and neurosurgical patholo-
gies, they have the advantage of minimal invasive-
ness.”»”

A valuable alternative comes from nanotechnol-
ogy, which uses polymeric nanomedicines that are able
to easily cross the BBB.™"

In addition, several studies have highlighted the
presence of cancer stem cells (CSCs) in malignant
brain tumors, which have self-renewing capabilities.
The high incidence of dissemination and recurrence
associated with MB is mainly attributable to the pres-
ence of CSCs. They have been reported to also be re-
sponsible for therapeutic resistance.”” A further ongo-
ing therapeutic approach targets the MB-CSCs, with
agents directed at targeting specific pathways, such as
CD133, SHH, PI3K/AKT, Stat3, and NOTCH.7*

Yu et al. tested the Seneca Valley virus-001 (SVV-
001) which can infect and destroy the CSCs, express
CD133, and results in increased survival.®!

However, the current amount of knowledge on

MB-CSCs is still not sufficient for bedside application.

Conclusion

Advanced genetic studies resulted in the identifi-
cation of prognostic factors of MBs, which have been
translated into a risk stratification and an updated
classification. The new genetic subgrouping provides
the possibility for refining MB treatment strategies
and developing novel molecular-guided clinical inter-
ventions.

Target agents directed against SHH, PI3K/AKT/
mTOR and TKIs have been tested with favorable re-
sults, especially in SHH-MBs, whereas adoptive im-
munotherapies have been proposed for recurrent or
refractory MBs.

The high genetic heterogeneity, especially of
Group 3 and 4 MBs, the presence of CSCs and the

BBB, are all responsible for chemoresistance.
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Tailored therapies and combined chemotherapy
approaches need to be further validated.
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