96 research outputs found

    Migration pattern of Gambel’s White-crowned Sparrow along the Pacific Flyway

    Get PDF
    White-crowned Sparrow (Zonotrichia leucophrys) populations of western North America exhibit dramatic differences in life history strategies including migration behavior. However, individual migration strategies and population-level migratory patterns remain largely unknown for this species. Here, we focused on the long-distance migratory subspecies, Gambel’s White-crowned Sparrow (Zonotrichia leucophrys gambelii). We used ringing, tracking and stable hydrogen isotope (ή2H) analysis of individuals migrating along the Pacific Flyway to assess individual phenology and routes as well as the pattern of connectivity between breeding and non-breeding sites. Results from all three methods, consisting of 79 ring recoveries, four light level geolocator tracks and 388 feather ή2H values, indicate low degrees of migratory connectivity. The isotope data provide evidence for leapfrog migration with the more southerly populations traveling greater distances to the breeding grounds than more centrally wintering individuals. Location estimates of four annual journeys revealed individually consistent migration strategies with relatively short flight bouts separated by two to three and two to six stopover sites during spring and autumn migration, respectively. However, combined results from all methods indicate high variability in migration distance among individuals. These findings confirm the phenotypic flexibility observed within this species and highlight the potential of White-crowned Sparrows for further investigations of evolutionary adaptations to ongoing changes in the environment

    How birds cope physiologically and behaviourally with extreme climatic events

    Get PDF
    As global climate change progresses, the occurrence of potentially disruptiveclimatic events such as storms are increasing in frequency, duration and inten-sity resulting in higher mortality and reduced reproductive success. Whatconstitutes an extreme climatic event? First we point out that extreme climaticevents in biological contexts can occur in any environment. Focusing on fieldand laboratory data on wild birds we propose a mechanistic approach to defin-ing and investigating what extreme climatic events are and how animals copewith them at physiological and behavioural levels. The life cycle of birds ismade up of life-history stages such as migration, breeding and moult thatevolved to match a range of environmental conditions an individual mightexpect during the year. When environmental conditions deteriorate anddeviate from the expected range then the individual must trigger copingmechanisms (emergency life-history stage) that will disrupt the temporal pro-gression of life-history stages, but enhance survival. Using the framework ofallostasis, we argue that an extreme climatic event in biological contexts canbe defined as when the cumulative resources available to an individual areexceeded by the sum of its energetic costs—a state called allostatic overload.This allostatic overload triggers the emergency life-history stage that tempor-arily allows the individual to cease regular activities in an attempt to surviveextreme conditions. We propose that glucocorticoid hormones play a majorrole in orchestrating coping mechanisms and are critical for enduring extremeclimatic events.This article is part of the themed issue ‘Behavioural, ecological andevolutionary responses to extreme climatic events’

    The roles of migratory and resident birds in local avian influenza infection dynamics

    Get PDF
    Migratory birds are an increasing focus of interest when it comes to infection dynamics and the spread of avian influenza viruses (AIV ). However, we lack detailed understanding of migratory birds’ contribution to local AIV prevalence levels and their downstream socio‐economic costs and threats. To explain the potential differential roles of migratory and resident birds in local AIV infection dynamics, we used a susceptible‐infectious‐recovered (SIR ) model. We investigated five (mutually non‐ exclusive) mechanisms potentially driving observed prevalence patterns: (1) a pronounced birth pulse (e.g. the synchronised annual influx of immunologically naïve individuals), (2) short‐term immunity, (3) increase in susceptible migrants, (4) differential susceptibility to infection (i.e. transmission rate) for migrants and residents, and (5) replacement of migrants during peak migration. SIR models describing all possible combinations of the five mechanisms were fitted to individual AIV infection data from a detailed longitudinal surveillance study in the partially migratory mallard duck (Anas platyrhynchos ). During autumn and winter, the local resident mallard community also held migratory mallards that exhibited distinct AIV infection dynamics. Replacement of migratory birds during peak migration in autumn was found to be the most important mechanism driving the variation in local AIV infection patterns. This suggests that a constant influx of migratory birds, likely immunological naïve to locally circulating AIV strains, is required to predict the observed temporal prevalence patterns and the distinct differences in prevalence between residents and migrants. Synthesis and applications . Our analysis reveals a key mechanism that could explain the amplifying role of migratory birds in local avian influenza virus infection dynamics; the constant flow and replacement of migratory birds during peak migration. Apart from monitoring efforts, in order to achieve adequate disease management and control in wildlife—with knock‐on effects for livestock and humans,—we conclude that it is crucial, in future surveillance studies, to record host demographical parameters such as population density, timing of birth and turnover of migrants

    Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium

    Get PDF
    Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change

    Strong host phylogenetic and ecological effects on host competency for avian influenza in Australian wild birds

    Get PDF
    Host susceptibility to parasites is mediated by intrinsic and external factors such as genetics, ecology, age and season. While waterfowl are considered central to the reservoir community for low pathogenic avian influenza A viruses (LPAIV), the role of host phylogeny has received limited formal attention. Herein, we analysed 12 339 oropharyngeal and cloacal swabs and 10 826 serum samples collected over 11 years from wild birds in Australia. As well as describing age and species-level differences in prevalence and seroprevalence, we reveal that host phylogeny is a key driver in host range. Seasonality effects appear less pronounced than in the Northern Hemisphere, while annual variations are potentially linked to El Niño–Southern Oscillation. Our study provides a uniquely detailed insight into the evolutionary ecology of LPAIV in its avian reservoir community, defining distinctive processes on the continent of Australia and expanding our understanding of LPAIV globally.Michelle Wille, Simeon Lisovski, David Roshier, Marta Ferenczi, Bethany J. Hoye, Trent Leen, Simone Warner, Ron A. M. Fouchier, Aeron C. Hurt, Edward C. Holmes, and Marcel Klaasse

    Inherent limits of light-level geolocation may lead to over-interpretation

    Get PDF
    In their 2015 Current Biology paper, Streby et al. [1] reported that Golden-winged Warblers (Vermivora chrysoptera), which had just migrated to their breeding location in eastern Tennessee, performed a facultative and up to “>1,500 km roundtrip” to the Gulf of Mexico to avoid a severe tornadic storm. From light-level geolocator data, wherein geographical locations are estimated via the timing of sunrise and sunset, Streby et al. [1] concluded that the warblers had evacuated their breeding area approximately 24 hours before the storm and returned about five days later. The authors presented this finding as evidence that migratory birds avoid severe storms by temporarily moving long-distances. However, the tracking method employed by Streby et al. [1] is prone to considerable error and uncertainty. Here, we argue that this interpretation of the data oversteps the limits of the used tracking technique. By calculating the expected geographical error range for the tracked birds, we demonstrate that the hypothesized movements fell well within the geolocators’ inherent error range for this species and that such deviations in latitude occur frequently even if individuals remain stationary

    Very rapid long-distance sea crossing by a migratory bird

    Get PDF
    Landbirds undertaking within-continent migrations have the possibility to stop en route, but most long-distance migrants must also undertake large non-stop sea crossings, the length of which can vary greatly. For shorebirds migrating from Iceland to West Africa, the shortest route would involve one of the longest continuous sea crossings while alternative, mostly overland, routes are available. Using geolocators to track the migration of Icelandic whimbrels (Numenius phaeopus), we show that they can complete a round-trip of 11,000 km making two non-stop sea crossings and flying at speeds of up to 24 m s-1; the fastest recorded for shorebirds flying over the ocean. Although wind support could reduce flight energetic costs, whimbrels faced headwinds up to twice their ground speed, indicating that unfavourable and potentially fatal weather conditions are not uncommon. Such apparently high risk migrations might be more common than previously thought, with potential fitness gains outweighing the costs

    Momenturm on valuing ecosystems is unstoppable

    No full text
    Editoral
    • 

    corecore