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Host susceptibility to parasites is mediated by intrinsic and external factors
such as genetics, ecology, age and season. While waterfowl are considered cen-
tral to the reservoir community for low pathogenic avian influenza A viruses
(LPAILV), the role of host phylogeny has received limited formal attention.
Herein, we analysed 12339 oropharyngeal and cloacal swabs and 10826
serum samples collected over 11 years from wild birds in Australia. As well
as describing age and species-level differences in prevalence and seropreva-
lence, we reveal that host phylogeny is a key driver in host range.
Seasonality effects appear less pronounced than in the Northern Hemisphere,
while annual variations are potentially linked to El Nifio-Southern Oscillation.
Our study provides a uniquely detailed insight into the evolutionary ecology of
LPALV in its avian reservoir community, defining distinctive processes on the
continent of Australia and expanding our understanding of LPAIV globally.

1. Introduction

Wild birds are believed to be the reservoir for most influenza A viruses and
have been detected across more than 100 avian species [1]. Avian influenza
viruses are predominately low pathogenic avian influenza A viruses (LPAIV)
with limited signs of disease [2]. However, following spill-over into poultry,
avian influenza virus may become highly pathogenic resulting in morbidity
and mortality, thus causing substantial economic losses [3,4]. There is also con-
tinued concern about zoonotic transmission of avian influenza virus from
poultry against the background of a continuously growing global poultry
market [5,6]. A hallmark of this growing problem is spillback of highly patho-
genic avian influenza virus into wild birds, which results in mass mortality
events in wild birds and the global spread of these viruses [7].

Many pathogens such as LPAIV persist in multi-host systems, making the
identification of infection reservoirs crucial for devising effective interventions.
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Yet, empirical characterization of host reservoir communities
is a challenge [8]. Through intensive surveillance, members of
the avian order Anseriformes, notably the family Anatidae
(ducks, geese and swans), and to a lesser extent Charadrii-
formes (shorebirds and gulls) with emphasis on the family
Scolopacidae (sandpipers), have been identified as key reser-
voirs of LPAIV [1]. Across sampled host species within
these taxa, there appears to be significant heterogeneity in
competency (here defined as the combined effect of exposure
and susceptibility [9]), viral diversity and host response to
AIV [1]. Indeed, ducks of the genus Anas have generally
been reported to have high prevalence and diversity of
AIV subtypes [1]. This has led to an overrepresentation of
select host taxa, including Anas ducks, in research and
surveillance systems.

In the light of this bias, it is important to recognize that
our current understanding of LPAIV ecology is described
from a duck-centric, particularly mallard-focussed (refer
to electronic supplementary material, table S2 for scientific
names), temperate and Northern Hemisphere perspective
[10-13]. However, a continental-scale study across North
America demonstrated that LPAIV infection dynamics vary
due to differences in climate, seasonality and host ecology
[14], with low-latitude environments having lower AIV preva-
lence with limited seasonal variation [14,15]. Data from
Australia have shown low prevalence, no consistent seasonal
pattern [16,17] and a profound inter-annual variation in the
timing and quantity of rainfall strongly linked with El Nifio-
Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD)
[18-22]. Beyond Anseriformes, LPAIV dynamics and ecology
in Scolopacidae is unclear, with low prevalence and haphazard
sampling globally, with the exception of Delaware Bay,
USA [23-26].

Taken together, we have a biased understanding of LPAIV
ecology, with a strong focus on Anas ducks as reservoirs,
and only a limited appreciation of geographical variations in
these dynamics. Herein, we aim to address a number of key
questions arising from this bias. First, to reveal the extent to
which host species exhibit phylogenetically conserved patterns
of LPAIV prevalence and seroprevalence, from which we can
infer patterns of host competency [27,28]. Species-level differ-
ences in prevalence are often reported in AIV studies and are
reflected by the various traits associated with both suscepti-
bility (e.g. age, body condition and pre-existing immunity),
and exposure (e.g. foraging behaviour, migration and repro-
duction) [9,29]. While factors such as age are well-established
traits in susceptibility, the role of host phylogeny as a driver
of these species differences has only rarely been considered
[29] and has never been incorporated at either high (.e.
among avian orders) or low (i.e. within families) levels of classi-
fication. Second, while controlling for these potential host
phylogenetic and phylogenetic-independent species effects,
we revisit the effects of age, season and eco-region as key eco-
logical factors known to play a role in LPAIV prevalence,
particularly in a geographical and climatic region that has
seen limited research into AIV ecology. We address these ques-
tions based on the analysis of more than 10000 samples
collected within a single study spanning 11 years and across
76 species and seven avian orders, allowing for both a broad
and an in-depth phylogenetic comparison across a wide host
landscape for this virus. Critically, we leverage both virological
and serological data into our framework. While virological data
are central to understanding active infection, it may be deficient

when sampling sporadically or without prior information on [ 2 |

timing, age or species to target. As such, the addition of serolo-
gical data allows us to garner a more complete picture of
LPAIV dynamics on this unique continent.

2. Methods

(a) Sample collection and screening for low pathogenic
avian influenza A viruses

Samples were collected between November 2010 and March
2021. Three main catching techniques were employed. Both
oropharyngeal and cloacal samples were collected from each
individual bird using a sterile tipped applicator and placed
into virus transport media. Blood samples were collected from
each bird, except for the hunted ducks. Up to 200 pl was col-
lected, primarily from the brachial vein, using the Microvette
capillary system for serum collection (Sarstedt). Samples were
screened as previously described [30]. A number of PCR-positive
samples generated in this study were subtyped and sequenced,
and were incorporated into an Australia-wide multi-institution
study [31]. Subtype information for the samples reported both
in this study and in [31] are provided in the electronic
supplementary material, table S1. More detail pertaining to cap-
ture, sampling handling, screening and subtyping methods is
provided in the electronic supplementary material methods.

(b) Data analysis

For oropharyngeal and cloacal swab samples collected separately,
we considered an individual bird positive if either the oral or
cloacal sample was positive and merged into a single entry.

We used phylogenetic generalized linear mixed effect models
to investigate the simultaneous effects of species as a random
variable and fixed-effect, explanatory variables age, eco-region,
season and year on LPAIV prevalence and seroprevalence. For
species, we evaluated both the phylogenetic species effect, which
evaluates the contribution of shared evolutionary history among
species (e.g. genetic factors; termed ‘phylogenetic effect’) as well
as the species effect independent of the phylogenetic relationship
between species (e.g. ecological factors; termed ‘species effect’).
Bird age was presented in two categories: juvenile (i.e. hatch-
year) or adult. Three eco-regions, i.e. temperate, arid and tropical,
were used based on the 2012 Interim Biogeographic Regionalisa-
tion for Australia version 7 (https://www.environment.gov.au/
land/nrs/science/ibra#ibra). Season was divided into summer
(September-February) and winter (March-August). For migratory
shorebirds, summer coincides with the arrival of birds from the
breeding grounds followed by their primary moult. Winter
includes the period of pre-migratory preparation prior to departure
for Northern Hemisphere breeding grounds. This behaviour
applies to birds in their second year and older; for most shorebird
species birds in their first year remain in Australia for the southern
hemisphere winter.

Species with fewer than 50 samples were excluded from the
analyses. To evaluate phylogenetic and species effects across
higher and lower levels of classification (i.e. comparing species
across multiple orders versus a comparison of species within
families), we ran analyses on three sets of taxa. First, a set con-
taining all species sampled. Second, a subset of this first group
with only species belonging to the family Anatidae and, third,
only species belonging to the family Scolopacidae. For
the latter two taxon sets, we removed year 2014, 2015 and
2016 and the tropical eco-region for Anatidae, and the arid
eco-region for Scolopacidae, due to low sample sizes.

The analyses were conducted using Bayesian generalized
(non-)linear multivariate multilevel models using the brm()
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Figure 1. Sampling effort and virus prevalence across the study period. (a) Avian influenza viral prevalence based on qPCR of swab samples and (b) seroprevalence
based upon a commercial anti-NP ELISA of serum samples. Points represent point estimates of percentage prevalence, and bars are the 95% confidence interval.
Numbers above each estimate represent the number of samples included. For both (a) and (b), we excluded avian orders from which we had less than 10 samples
collected throughout the entire study period. (c) Map illustrating geographical sampling effort across Australia. Map colours refer to eco-regions and was generated
from https://www.environment.gov.au/land/nrs/science/ibra/australias-ecoregions, and distributed under a Creative Commons Attribution 3.0 Australia License.
Herein ‘temperate’ includes both temperate grasslands and forests, ‘tropical includes tropical and subtropical forests and grasslands and ‘arid” includes deserts
and xeric shrublands. Australian state names are TAS—Tasmania, VIC—Victoria, SA—South Australia, NSW—New South Wales, WA—Western Australia,
NT—Northern Territory and QLD—Queensland. Sampling location is indicated by a black circle, with size corresponding to the number of individuals sampled.
Numbers within black circles refer to the number of individuals sampled; for some individuals, we may have both swab and serum samples and for others only swab
or serum samples. Those samples collected from Victoria, but not in study sites in and around Melbourne have been added to the Victorian count, and this is
indicated by an asterisk. A detailed breakdown of species composition is presented in the electronic supplementary material, table S2.

function within R package brms (Bayesian Regression Models 2412 serum samples) and family Scolopacidae within the
using ‘Stan’), using family ‘Bernoulli’ and default priors Charadriiformes (7622 swabs and 7520 serum samples)
[32,33]. We ran a series of candidate models for each of the (figure 1). Avian orders for which we had negligible sample

three taxon sets and for both LPAIV and seroprevalence, i.e.
six model sets with 10 models each, following [27]: (i) a model
containing only an intercept, (ii) a model containing an intercept
plus the phylogenetic and species effects (iii) the full model con-
taining all fixed-effect explanatory variables as well as the
phylogenetic and the species random effects, (iv) the full model

numbers included the Galliformes (1 =4), Podicipediformes
(n=7) and Suliformes (n=3) (electronic supplementary
material, table S2).

Overall, we found evidence of LPAIV infection and anti-
LPAIV antibodies in Anseriformes (5.4% virus prevalence and

minus the phylogenetic effect, (v) the full model minus the 53% seroprevalence) and Charadriiformes (3.5% virus preva-
species effect, (vi) the full model without phylogenetic and lence and 17% seroprevalence), with 4% virus prevalence
species effects, (vii) the reduced model, (viii) the reduced and 17% seroprevalence in the Scolopacidae. This is in accord
model without the phylogenetic effect, (ix) the reduced model with our expectation that members of these two orders (and
without the species effect and (x) the reduced model without families) of birds comprise the main LPAIV reservoirs. While
the species and phylogenetic effects. The reduced models we failed to find active LPAIV infection, we did detect low-

included only the predictors found to be important, i.e. their
95% credible intervals (CIs) were non-overlapping with zero in
the full models. Models were compared using their WAIC
scores. Further data details pertaining to these models are pro-
vided in the electronic supplementary material, methods.

level seropositivity in the Passeriformes (5.3%), Procellarii-
formes (3.8%), Gruiiformes (1.4%) and Columbiformes
(0.97%). We found no evidence of anti-LPAIV antibodies in
any of the 62 Psittaciformes tested (figure 1).

A total of 70 PCR-positive samples were subtyped
through sequencing and include H1 (n=2), H2 (n=1), H3
(n=11), H4 (n=5), H6 n=9), H9 (=1), H10 (n=17), HI1

3. Results (n=3), H12 (n=18) and mixed (n=3). The majority of

subtyped/sequenced viruses are those collected from the
(a) Sampling regime Scolopacidae (n=>57), particularly ruddy turnstones sampled
Between 2010 and 2021, 10826 serum samples and 12339 on King Island (n=53), as compared to samples from the
swab samples (combined oropharangeal and cloacal) were Anatidae (n=13) (electronic supplementary material,
collected in Australia. The dataset comprises 11 orders, 25 table S1). Due to the extremely limited subtype data available,
families and 75 species of Australian birds, although the we have not integrated these data into further analysis in this
majority of the samples were collected from members of the study, but these data are integrated into an Australia-wide

family Anatidae within the Anseriformes (3657 swabs and study of virus evolution [31].
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Figure 2. Prevalence and seroprevalence in Anseriformes and Charadriiformes. Host species are arranged taxonomically, according to maximum-likelihood phylo-
genies based on concatenated mitochondrial and one nuclear marker. Bayesian support values are presented at the node, and the scale bar indicates the number of
substitutions per site. The hash symbol (#) refers to a node on the tree which does not conform to known phylogenetic relationships, and we were unable to resolve
this discrepancy based on available host genetic data in GenBank. Species from which greater than 50 samples were collected are included, and percentage preva-
lence and 95% confidence intervals are plotted. Colours refer to host families in the order Anseriformes and Charadriiformes; host families from other orders are in
grey. Sample size is plotted adjacent to the point estimate. Seroprevalence refers to the percentage prevalence of anti-NP antibodies in collected serum samples.
Virus prevalence refers to the percentage prevalence of LPAIV by the use of qPCR. While we show seroprevalence for crested tern in this figure for clarity, it was not
included in the seroprevalence all-species analysis due to low sample size (less than 50).

To date, highly pathogenic avian influenza has never
been detected in free-living wild birds in Australia [16,31].

(b) Phylogenetic and non-phylogenetic species effects
are key determinants of host competence

Six different species within the Anseriformes were included in
our analysis. While this host order is considered central to the
epidemiology of LPAIV and had an overall seroprevalence of
53% and virus prevalence of 54%, Australian wood duck
was a clear exception with a substantially lower seroprevalence
(2.8%) and viral prevalence (2.3%) compared to other duck
species, suggesting that it is a less competent LPAIV host
and as such plays a nominal role in AIV ecology (figure 2).
For the second most important host order for LPALV, the
Charadriiformes, we found marked heterogeneity in both
seroprevalence and viral prevalence. For example, in the
Scolopacidae family, we found higher viral prevalence and sero-
prevalence (greater than 10%) in ruddy turnstone, red nnot,
sharp-tailed sandpiper and red-necked stint, with very low or
no evidence of antibodies in bar-tailed godwit, great knot,
curlew sandpiper and sanderling. The only other shorebird
from which we detected LPAIV was red-necked avocet, family
Recurvirostridae (figure 2). In addition to shorebirds, we also
included three gulls and tern species. Viral prevalence was low
(less than 1%) in all three species, although seroprevalence in
silver gulls was 22.2% (figure 2), suggesting our sampling
regime to detect AIV infection was possibly inadequate or
NP-antibodies in this species are particularly long-lived.

Across all 10 candidate models tested for each of the three
avian taxon sets, the models that considered phylogeny and
species were the best fit for both virus prevalence
and seroprevalence (i.e. had a AWAIC <2; table 1). Further,
models that included all or a reduced set of explanatory
variables, as compared to neither, greatly improved the
performance of the candidate models in describing
the three taxon sets across both virus prevalence and seropre-
valence. As such, models including phylogenetic effects,
species effects and other variables (such as age, eco-region,
year and season) are required to adequately explain LPAIV
variation.

Considering all species, the phylogenetic signal, 1, which
can vary between 0 (non-existent) to 1 (very strong) was
generally strong in both viral prevalence (0.76) and seropre-
valence (0.71; table 2 and figure 3). In addition to all
species, we analysed the phylogenetic effect at two lower
taxonomic levels (within the Anatidae and Scolopacidae).
Within these key host families, the phylogenetic signals
remained significant, varying between 0.27 and 0.60 (table 2
and figure 3). It is noteworthy that the phylogenetic effect
at these lower (family) level comparisons was lower than
when comparing species across the seven orders (table 2).
However, it still showed that within these two major LPAIV
host groups, considerable variation in competence levels
exists between species. These species differences with a phy-
logenetic origin are further augmented by non-phylogenetic
species differences, potentially related to differences in ecol-
ogy, as evidenced by significant species signals among the
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Table 1. AWAIC values for all 10 candidate models, for both virus prevalence and seroprevalence in three different host taxon sets. Models that fit the data
most satisfactorily (with a AWAIC < 2) are italicized. Models are ranked based on overall performance, starting with models that tended to perform best in
describing virus prevalence and seroprevalences across all three taxon sets. Generally, models that included both random effects (phylogeny and species), as
well as a full or reduced set of fixed-effect, explanatory variables (age, eco-region, season and year) performed best in explaining the variation across all taxon

sets, for both virus prevalence and seroprevalence.

model description

response AWAIC for prevalence in

predictors random effects all species Anatidae Scolopacidae
all reduced none species phylogeny virus serology virus® serology" virus®® serologyb
X X X 37 0.6 1.3 0.0 0.2 1.7

X 140.0 1529.1 21 149.6 30.1 4453

®The models did not contain year as an explanatory variable, given poor model convergence when included.

®The models did not contain the arid eco-region due to low sample size.

“The models did not contain years 2014, 2015 and 2019, or the tropical eco-region due to low sample size.

Table 2. Phylogenetic signal (1) estimates with 95% Cls for full and reduced models with both phylogeny and species as random effects. Phylogenetic signals

are only indicated if the model had a AWAIC < 2.

2 (95% Cis)

full model reduced model

all species, virus prevalence
all species, seroprevalence
Anatidae, virus prevalence
Anatidae, seroprevalence
Scolopacidae, virus prevalence
Scolopacidae, seroprevalence

top-ranking models in all taxon sets for both virus prevalence
and seroprevalence (figure 3, table 1).

(c) Seroprevalence and viral prevalence have inverse
relationships with bird age

Across the four explanatory variables investigated, age was an
important predictor of virus prevalence and seroprevalence in
the models covering all species, with the Scolopacidae and the
Anatidae showing a similar tendency (figure 3; electronic sup-
plementary material, figure S1a). Across all species combined,
juveniles had a 2.0% higher viral prevalence (95% CI10.7-3.5%)
and a 15.5% (-17.0 to —13.7%) lower seroprevalence as com-
pared to adults (where percentages are calculated from the
logit estimates depicted in figure 3). For the Scolopacidae
only, these differences were 1.2% (0.5-2.0%) and —1.0% (-1.1

076 (047-091)

071(024_094) OO RR 072 (025-093)

0.27 (0.00-0.81)
0.45 (0.00-0.90) 0.42 (0.00-0.88)

to —0.9%), for virus prevalence and seroprevalence, respect-
ively. At a species level, significant differences in prevalence
and seroprevalence between adults and juveniles were limited
to species in which prevalence levels were also high for
Scolopacidae (i.e. those species with a seroprevalence > 18%):
red-necked stint, ruddy turnstone and sharp-tailed sandpiper
(electronic supplementary material, figure S1b). Trending in a
similar direction, in Anatidae, there was no significant age
effect in virus prevalence (0.2%, 95% CI —3.2 to 5.8%) but there
was in seroprevalence (-8.0%, —14.5 to 0.0%). At the species
level within the Anatidae, there were no species where virus
prevalence for juveniles was different from adults (electronic
supplementary material, figure S1c). However, for both Pacific
black duck and pink-eared ducks, the seroprevalence estimates
for juveniles were lower as compared to adults (electronic sup-
plementary material, figure Slc). Unfortunately, sample size for
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Figure 3. Posterior mean estimates with s.e. (thick bars) and 95% ClIs (capped thin bars) of predictors and random effects on (a—c) LPAIV prevalence and (d—f)
seroprevalence for (a,d) all species with greater than 50 samples, (b,e) Anatidae and (c,f) Scolopacidae for the full brms models. Parameters with intervals that do

not overlap zero (indicated by a red line) are considered to have a significant influence on the response. Note that estimates are logits.

juvenile Anatidae was generally low (less than 50, with the
exception of grey teal for which we had 66 samples), which
may have played a role in only detecting a limited age-depen-
dant effect on prevalence and seroprevalence for this avian
family. As prevalence for avian species not in the Anseriformes
or Charadriiformes was negligible (0% virus prevalence and
11% seroprevalence) no age-dependant patterns can be inferred
for these orders.

(d) Season and year modulate low pathogenic avian
influenza A viruses prevalence and seroprevalence

Although less pronounced than northern hemisphere studies,
season significantly affected prevalence levels in our data.
Across all three species groups, winter viral prevalence was
significantly higher compared to summer viral prevalence
estimates (where again percentages are calculated from
the logit estimates depicted in figure 3; all-species: 4.4%,
2.8-6.5; Anatidae: 4.4%, 0.8-9.8; Scolopacidae 3.2%, 2.1-4.6).
Similarly, the same pattern was found in seroprevalence
across all three species groups (all-species: 6.1%, 3.3-8.7;
Anatidae: 6.5%, 1.1-12.7; Scolopacidae 0.5%, 0.2-0.8). In the
case of Scolopacidae, summer includes the arrival of birds
from their Arctic breeding grounds while winter includes
birds sampled during the pre-migration phase.

In all three taxon groups, sampling year drove significant
variation in virus prevalence, except for Scolopacidae, wherein
the model including year did not converge. Given strong
year effects for both the Anatidae (virus prevalence and sero-
prevalence) and Scolopacide (seroprevalence only), it is
unsurprising that there was also a strong year effect in the all-
species models. Based on the findings of [18], we compared
annual rainfall across the Murray-Darling Basin (electronic sup-
plementary material, figure 52), which covers most of southeast
Australia, with the year effect estimates in virus prevalence in
Anatidae (figure 3b), and found a significant correlation (r =
0.782, N=7, p<0.04). Within the Anatidae and all-species
model, for which we can assess both virus prevalence and ser-
oprevalence, we found no correlation between the pattern of
virus prevalence (r =-0.228, p=0.623) and seroprevalence
(r=0.430, p = 0.215) across years. That is, we did not observe
high virus prevalence in years of low seroprevalence. We also
found that the year effects in seroprevalence are different
between Anatidae and Scolopacidae (r = 0.621, p = 0.100).

(e) Role of eco-region in low pathogenic avian
influenza A viruses prevalence

While the vast majority of our dataset comprises samples
collected in temperate Australia, 1950 samples were collected
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in arid Australia (largely Anatidae) and 1062 samples were
collected in tropical Australia (largely Scolopacidae). Interest-
ingly, we only observed significant effects of eco-region on
virus prevalence in Anatidae and on seroprevalence in the
all-species taxon set. In the Anatidae, virus prevalence was
higher in temperate regions as compared to arid regions
(where percentages are calculated from the logit estimates
depicted in figure 3; 11.0%, 6.7-18.5).

Variation in host competence, through differences in exposure
and susceptibility, among host species is a common feature of
multi-host systems [27,28,34]. Our holistic study of LPAIV evol-
utionary ecology in wild birds is unique for its use of a paired
virological and serological dataset, from which we inferred host
competence and the role of host phylogeny in the ecology of
LPAIV. A major advantage of the inclusion of serological
data is that it expands the window of detectability of LPAIV.
While LPAIV infections in individuals are only 7-11 days
[10], anti-AIV antibodies may persist from months to years
[35,36] and therefore population level seroprevalence is modu-
lated by processes over much longer timescales like season,
rainfall and migration [9]. The use of serology allowed us to
identify bird taxa that, while they are unlikely to be important
reservoirs, are occasionally infected by LPAIV (e.g. zebra finch).
Adding serology thus also adds credibility that the results of
viral prevalence data are not influenced by missing prevalence
peaks and non-representative sample collection. This would
manifest as low LPAIV prevalence but higher seroprevalence.
In our dataset, silver gull might be an example of that, although
the observation in this species could also be caused by excep-
tional long-lived anti-AIV antibodies. Conversely, where
LPAIV prevalence matches seroprevalence levels, this may
suggest unbiased sampling. For instance, both low viral preva-
lence and seroprevalence in sanderling and Australian wood
duck as compared to other related taxa, suggests that those
results are not likely to be biased by our sample collection
regime and that these two species are probably true outliers
within these two LPAIV-reservoir species groups. Across all
species combined and within the more traditional hosts (Anser-
iformes and Charadriiformes), analysing both serological data
and virology data strengthened the interpretation of the var-
ious random and fixed-effect explanatory variables, yielding
largely overlapping and mutually supporting patterns.
Despite variations in prevalence reported across species in
waterfowl or shorebird systems (e.g. [1]), the phylogenetic
relationships among host species have never previously been
integrated into statistical approaches to understand this vari-
ation in host prevalence, with the exception of [29]. The
strong phylogenetic effect found in the all-species comparison
is unsurprising given the identification of Anseriformes and
to a lesser extent Charadriiformes as highly competent
LPAIV hosts compared to other bird taxa decades ago [1,37].
However, the finding of a strong phylogenetic effect within
both the Anatidae and Scolopacidae is striking. That phylogeny
is such an important covariate strongly suggests that genetic
relatedness, perhaps including shared aspects of the immune
response and/or virus susceptibility, are at play. The strong
phylogenetic effects identified may also be key elements of
host-virus coevolution, and likely explain differences in host
responses to infection, such as avoidance, resistance or toler-
ance. Indeed, it has long been argued that wild birds and

LPAIV have undergone long-term coevolution, such that reser-

voir taxa may have adapted towards tolerance rather than
resistance of LPAIV through mounting of a dampened
immune response. In turn, (low pathogenic) LPAIV evolved
low virulence in these hosts [2]. Indeed, Longdon et al. [28]
and Barrow et al. [27], similarly infer that phylogenetic vari-
ation was driven by the generalized immune response, and
that there has likely been long-term co-evolution between
viruses/parasites and their hosts.

Beyond phylogenetic effects, species effects not driven by
phylogeny appeared of importance. For instance, within the
six Calidris species (i.e. curlew sandpiper to red-necked stint
in figure 2), we found large variation in prevalence. These
marked species differences across closely related species
could be due to variations in habitat preference and degree to
which they are associated with water. For example, sanderling
is the most marine and beach-dwelling of all Calidris species. In
addition, among the Anatidae, the most distantly related
species (the Anas ducks versus the pink-eared duck) had simi-
lar prevalence values, whereas the intermediated related
Australian wood duck had very low prevalence values. This
is likely explained by foraging ecology, where Australian
wood duck is an exclusive grazing duck in contrast with the
other species that dabble or filter feed. Foraging ecology is sus-
pected to play a key role in LPAIV ecology; the virus is
transmitted by the faecal-oral route and avian taxa foraging
in shallow water, such as members of Anseriformes and Char-
adriiformes play a central role in virus ecology. To date, there is
only one study that has previously investigated the potential
effect of specific species traits on AIV prevalence after correct-
ing for phylogeny, which we have shown here to be crucial
[29]. Having only a limited dataset at their disposal, they
only found one weak effect across the eight ecological traits
they investigated (migration distance). Obviously, the strong
species effects found here warrant further investigation into
which species traits, including foraging ecology, may explain
differences in LPAIV prevalence between species.

This study uniquely describes a disease reservoir commu-
nity and is the most comprehensive assessment of LPAIV
ecology on the Australian continent. No previous studies
have directly addressed host competency, age or eco-region,
while only two studies addressed year and season effects
[16-18,38,39]. First, in addition to species and phylogenetic
effects, our statistical approach accounted for life history (age),
seasonal, annual and environmental effects that are confirmed
drivers of infection. As previously demonstrated, age is an
important driver of LPAIV ecology. Higher LPAIV prevalence
has been found in juvenile compared to adult ducks [10,11]
and in mute swans the immune repertoire increases with age
[36]. Second, as noted previously, seasonal cycle is central to
prevalence: prevalence peaks are associated with autumn
migration in the temperate north [10,11], with the arrival of Euro-
pean migrants in Africa [40,41] and with rainfall in Australia,
although for the latter this is often on a multi-year rather than
annual scale [18]. A determinative feature of the southern hemi-
sphere climate, particularly Australia, is the ENSO and IOD
linked irregularity in both timing and location of wet and dry
periods [20]. As a result, breeding seasonality does not mirror
that of northern hemisphere, rather some species may have
elongated breeding times (5-7 months), or breeding may be
competently opportunistic and take place at any time of the
year with multiple broods in wet years [19,22]. Therefore, with
increased rainfall, more juvenile birds are recruited into



populations, driving an increase in the proportion of immunolo-
gically naive birds in waterfowl populations, in turn modulating
LPAIV prevalence [18]. Third, in addition to strong year effects
associated with increased rainfall, we found that in the long-dis-
tance migratory Scolopacidae LPAIV prevalence was lowest just
after their arrival from the breeding grounds and highest during
the latter stages of the non-breeding season in Australia. Low
population prevalence upon arrival may be due to parasites lim-
iting migration [42] and thus new arrivals being preferentially
free of pathogenic infections. Moreover, lower temperatures
and lower UV levels during the latter stage of their Australian
staging may be more conducive for virus survival [9]. Finally,
despite the sampling across the three eco-regions arid, tropical
and temperate being strongly biased towards the latter region,
prevalence appeared lowest in arid environments, in line with
the virus’ susceptibility to desiccation [43].

Taken together, in addition to confirming the role of
climate as well as (ENSO-linked) rainfall and age on LPAIV
prevalence, we provide new insights into LPAIV evolution-
ary ecology that define the specific processes that occur on
the continent of Australia and expand our understanding of
the factors that modulate LPAIV ecology across wild birds
globally. Notably the strong phylogenetic and non-phylogenetic
species effects revealed here, highlight the importance of teas-
ing apart these two overlooked factors in LPAIV ecology and
evolution. Simultaneously considering the existence of strong
phylogenetic and non-phylogenetic species effects, even
within the two major LPAIV competent families, highlights
how species-specific approaches are required in identifying
reservoir communities, for understanding wildlife disease
dynamics, and in evaluating spill-over risks from wildlife to
livestock and humans.
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