9,554 research outputs found
A new look at a polar crown cavity as observed by SDO/AIA
Context.
The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere.
Aims.
We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process.
Methods.
We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb.
Results.
We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon).
Conclusions.
We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1
Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities
The coronal magnetic field is the primary driver of solar dynamic events.
Linear and circular polarization signals of certain infrared coronal emission
lines contain information about the magnetic field, and to access this
information, either a forward or an inversion method must be used. We study
three coronal magnetic configurations that are applicable to polar-crown
filament cavities by doing forward calculations to produce synthetic
polarization data. We analyze these forward data to determine the
distinguishing characteristics of each model. We conclude that it is possible
to distinguish between cylindrical flux ropes, spheromak flux ropes, and
sheared arcades using coronal polarization measurements. If one of these models
is found to be consistent with observational measurements, it will mean
positive identification of the magnetic morphology that surrounds certain
quiescent filaments, which will lead to a greater understanding of how they
form and why they erupt.Comment: 22 pages, 8 figures, Solar Physics topical issue: Coronal Magnetis
Partially-erupting prominences: a comparison between observations and model-predicted observables
<p><b>Aims:</b> We investigate several partially-erupting prominences to study their relationship with other CME-associated phenomena and compare these observations with observables predicted by a model of partially-expelled-flux-ropes (Gibson & Fan 2006a, ApJ, 637, L65; 2006b, J. Geophys. Res., 111, 12103).</p>
<p><b>Methods:</b> We studied 6 selected events with partially-erupting prominences using multi-wavelength observations recorded by the Extreme-ultraviolet Imaging Telescope (EIT), Transition Region and Coronal Explorer (TRACE), Mauna Loa Solar Observatory (MLSO), Big Bear Solar Observatory (BBSO), and Soft X-ray Telescope (SXT). The observational features associated with partially-erupting prominences were then compared with the predicted observables from the model.</p>
<p><b>Results:</b> The partially-expelled-flux-rope (PEFR) model can explain the partial eruption of these prominences, and in addition predicts a variety of other CME-related observables that provide evidence of internal reconnection during eruption. We find that all of the partially-erupting prominences studied in this paper exhibit indirect evidence of internal reconnection. Moreover, all cases showed evidence of at least one observable unique to the PEFR model, e.g., dimmings external to the source region and/or a soft X-ray cusp overlying a reformed sigmoid.</p>
<p><b>Conclusions:</b> The PEFR model provides a plausible mechanism to explain the observed evolution of partially-erupting-prominence-associated CMEs in our study.</p>
Thin film structural analysis using variable-period x-ray standing waves
Variable-period x-ray standing wave (VPXSW) studies have been carried out using 3 keV x rays and photoelectron detection. Two model surfaces have been used, a native SiO2 layer (20 Å thick) on bulk silicon, and a purpose-built multilayer surface comprising a chloroform/water marker layer (12 Å thick) on an ionic liquid spacer layer (211 Å thick) deposited on a SiO2/Si substrate at 90 K. By using photoelectron detection, both chemical and elemental sensitivity were achieved. The surfaces were modeled using dynamic x-ray scattering for x-ray intensity, and attenuation of photoelectrons transmitted through the layers, to produce simulations which accurately reproduced the experimental VPXSW measurements. VPXSW measurements made using the substrate, spacer layer, and marker layer photoelectron signatures produced consistent structural values. This work demonstrates that VPXSW can be used to determine chemically specific layer thicknesses within thick (≲300Å) surface structures composed of the light elements B, C, N, O, F, and Cl with an accuracy of 10 to 15 Å, perpendicular to the surface
Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers
A simple and robust method is presented for the construction of 3-dimensional crystals from silica and polystyrene microspheres. The crystals are suitable for use as templates in the production of three-dimensional photonic band gap (PBG) materials. Manipulation of the microspheres was achieved using a dynamic holographic assembler (DHA) consisting of computer controlled holographic optical tweezers. Attachment of the microspheres was achieved by adjusting their colloidal interactions during assembly. The method is demonstrated by constructing a variety of 3-dimensional crystals using spheres ranging in size from 3 µm down to 800 nm. A major advantage of the technique is that it may be used to build structures that cannot be made using self-assembly. This is illustrated through the construction of crystals in which line defects have been deliberately included, and by building simple cubic structures
Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator
We report the evolution of the surface electronic structure and surface
material properties of a topological crystalline insulator (TCI) Pb1-xSnxSe as
a function of various material parameters including composition x, temperature
T and crystal structure. Our spectroscopic data demonstrate the electronic
groundstate condition for the saddle point singularity, the tunability of
surface chemical potential, and the surface states' response to circularly
polarized light. Our results show that each material parameter can tune the
system between trivial and topological phase in a distinct way unlike as seen
in Bi2Se3 and related compounds, leading to a rich and unique topological phase
diagram. Our systematic studies of the TCI Pb1-xSnxSe are valuable materials
guide to realize new topological phenomena.Comment: 10 pages, 7 figures. Expanded version of arXiv:1403.156
On the structure and evolution of a polar crown prominence/filament system
Polar crown prominences are made of chromospheric plasma partially circling
the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D
dynamics of a polar crown prominence using high cadence EUV images from the
Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft
of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using
time series across specific structures we compare flows across the disk in 195A
with the prominence dynamics seen on the limb. The densest prominence material
forms vertical columns which are separated by many tens of Mm and connected by
dynamic bridges of plasma that are clearly visible in 304/171A two-color
images. We also observe intermittent but repetitious flows with velocity 15
km/s in the prominence that appear to be associated with EUV bright points on
the solar disk. The boundary between the prominence and the overlying cavity
appears as a sharp edge. We discuss the structure of the coronal cavity seen
both above and around the prominence. SDO/HMI and GONG magnetograms are used to
infer the underlying magnetic topology. The evolution and structure of the
prominence with respect to the magnetic field seems to agree with the filament
linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics
Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar
- …
