2,501 research outputs found
Structural and electromagnetic study of ferromagnetic semiconductor material
A detail structural and electrical analysis of a few doubleperovskite (La2CoMnO6, La2FeMnO6) and their perovskite counterpart (LaCoO3, LaCrO3and LaFeO3) have been performed. All the compounds are synthesized by wet chemical route(especially by sol-gel & pyropheric route). From XRD data analysis, the samples are found to be in single phase and stoichiometric. The information about the molecular bonding is obtained from the FTIR spectra. The band gap is calculated from UV-Visible spectra and the sample is characterised whether it is semiconducting and insulating. The morphology of the materials has been studied through FESEM and finally the dielectric spectroscopy has been carried out for all compounds
Quiet Planting in the Locked Constraint Satisfaction Problems
We study the planted ensemble of locked constraint satisfaction problems. We
describe the connection between the random and planted ensembles. The use of
the cavity method is combined with arguments from reconstruction on trees and
first and second moment considerations; in particular the connection with the
reconstruction on trees appears to be crucial. Our main result is the location
of the hard region in the planted ensemble. In a part of that hard region
instances have with high probability a single satisfying assignment.Comment: 21 pages, revised versio
Study on Gait Efficiency and Energy Cost of Below Knee Amputees After Therapeutic Practices
An earlier research advocated that a below knee amputee (BK) with conventional trans-tibial prosthesis attains higher gait efficiency at lower energy cost with therapeutic practices of proper time and co-ordination in compare to normal subjects of similar physical parameters and quality of life. The present study focused on comparative analysis of energy cost and gait efficiency between a group of below knee amputees and a control group (normal subjects without amputation) to indicate the consistency of the earlier findings. The subjects were selected with similar physical parameters and quality of life. Oxygen Uptake (VO2) and Heart Rate (HR) were measured by Cosmed® k4 b2 analyzer system. Gait efficiency (p < 0.0001) was found higher with lower energy cost for BK amputees after therapeutic practices than control group. The therapeutic activities contributed to efficient gait pattern for amputees ensuring proper time and co-ordination with balance in consistence to the earlier research
The Phase Diagram of 1-in-3 Satisfiability Problem
We study the typical case properties of the 1-in-3 satisfiability problem,
the boolean satisfaction problem where a clause is satisfied by exactly one
literal, in an enlarged random ensemble parametrized by average connectivity
and probability of negation of a variable in a clause. Random 1-in-3
Satisfiability and Exact 3-Cover are special cases of this ensemble. We
interpolate between these cases from a region where satisfiability can be
typically decided for all connectivities in polynomial time to a region where
deciding satisfiability is hard, in some interval of connectivities. We derive
several rigorous results in the first region, and develop the
one-step--replica-symmetry-breaking cavity analysis in the second one. We
discuss the prediction for the transition between the almost surely satisfiable
and the almost surely unsatisfiable phase, and other structural properties of
the phase diagram, in light of cavity method results.Comment: 30 pages, 12 figure
Exhaustive enumeration unveils clustering and freezing in random 3-SAT
We study geometrical properties of the complete set of solutions of the
random 3-satisfiability problem. We show that even for moderate system sizes
the number of clusters corresponds surprisingly well with the theoretic
asymptotic prediction. We locate the freezing transition in the space of
solutions which has been conjectured to be relevant in explaining the onset of
computational hardness in random constraint satisfaction problems.Comment: 4 pages, 3 figure
SmSP2: A serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties.
BackgroundSerine proteases are important virulence factors for many pathogens. Recently, we discovered a group of trypsin-like serine proteases with domain organization unique to flatworm parasites and containing a thrombospondin type 1 repeat (TSR-1). These proteases are recognized as antigens during host infection and may prove useful as anthelminthic vaccines, however their molecular characteristics are under-studied. Here, we characterize the structural and proteolytic attributes of serine protease 2 (SmSP2) from Schistosoma mansoni, one of the major species responsible for the tropical infectious disease, schistosomiasis.Methodology/principal findingsSmSP2 comprises three domains: a histidine stretch, TSR-1 and a serine protease domain. The cleavage specificity of recombinant SmSP2 was determined using positional scanning and multiplex combinatorial libraries and the determinants of specificity were identified with 3D homology models, demonstrating a trypsin-like endopeptidase mode of action. SmSP2 displayed restricted proteolysis on protein substrates. It activated tissue plasminogen activator and plasminogen as key components of the fibrinolytic system, and released the vasoregulatory peptide, kinin, from kininogen. SmSP2 was detected in the surface tegument, esophageal glands and reproductive organs of the adult parasite by immunofluorescence microscopy, and in the excretory/secretory products by immunoblotting.Conclusions/significanceThe data suggest that SmSP2 is secreted, functions at the host-parasite interface and contributes to the survival of the parasite by manipulating host vasodilatation and fibrinolysis. SmSP2 may be, therefore, a potential target for anti-schistosomal therapy
Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices
Compressed sensing is a signal processing method that acquires data directly
in a compressed form. This allows one to make less measurements than what was
considered necessary to record a signal, enabling faster or more precise
measurement protocols in a wide range of applications. Using an
interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a
strategy that allows compressed sensing to be performed at acquisition rates
approaching to the theoretical optimal limits. In this paper, we give a more
thorough presentation of our approach, and introduce many new results. We
present the probabilistic approach to reconstruction and discuss its optimality
and robustness. We detail the derivation of the message passing algorithm for
reconstruction and expectation max- imization learning of signal-model
parameters. We further develop the asymptotic analysis of the corresponding
phase diagrams with and without measurement noise, for different distribution
of signals, and discuss the best possible reconstruction performances
regardless of the algorithm. We also present new efficient seeding matrices,
test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe
Immediate Fitment of Prefabricated Orthoses in Corrective Surgery Camps
In surgical camps, deformity correction and immobilizationby Plaster of Paris (POP) cast is a routine methodfollowed in about four weeks by removal of sutures/plaster and provision of orthosis. A new technique wasdeveloped in which after corrective surgery, instead ofPOP cast pre-fabricated orthosis were fitted in 236 caseswith lower limb deformities following post polio residualparalysi and cerebral palsy.Use of pre-fabricated orthosis, immediately after surgeryin these camps reduced the cost markedly besides beingconvenient to fit the orthosis in one go
Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions
Methods for site-specific modification of proteins should be quantitative and versatile with respect to the nature and size of the biological or chemical targets involved. They should require minimal modification of the target, and the underlying reactions should be completed in a reasonable amount of time under physiological conditions. Sortase-mediated transpeptidation reactions meet these criteria and are compatible with other labeling methods. Here we describe the expression and purification conditions for two sortase A enzymes that have different recognition sequences. We also provide a protocol that allows the functionalization of any given protein at its C terminus, or, for select proteins, at an internal site. The target protein is engineered with a sortase-recognition motif (LPXTG) at the place where modification is desired. Upon recognition, sortase cleaves the protein between the threonine and glycine residues, facilitating the attachment of an exogenously added oligoglycine peptide modified with the functional group of choice (e.g., fluorophore, biotin, protein or lipid). Expression and purification of sortase takes ∼3 d, and sortase-mediated reactions take only a few minutes, but reaction times can be extended to increase yields.National Institutes of Health (U.S.) (Grant RO1 AI08787
- …
