13 research outputs found
ATXN2 and its neighbouring gene SH2B3 are associated with increased ALS risk in the Turkish population
PubMedID: 22916186Expansions of the polyglutamine (polyQ) domain (?34) in Ataxin-2 (ATXN2) are the primary cause of spinocerebellar ataxia type 2 (SCA2). Recent studies reported that intermediate-length (27-33) expansions increase the risk of Amyotrophic Lateral Sclerosis (ALS) in 1-4% of cases in diverse populations. This study investigates the Turkish population with respect to ALS risk, genotyping 158 sporadic, 78 familial patients and 420 neurologically healthy controls. We re-assessed the effect of ATXN2 expansions and extended the analysis for the first time to cover the ATXN2 locus with 18 Single Nucleotide Polymorphisms (SNPs) and their haplotypes. In accordance with other studies, our results confirmed that 31-32 polyQ repeats in the ATXN2 gene are associated with risk of developing ALS in 1.7% of the Turkish ALS cohort (p = 0.0172). Additionally, a significant association of a 136 kb haplotype block across the ATXN2 and SH2B3 genes was found in 19.4% of a subset of our ALS cohort and in 10.1% of the controls (p = 0.0057, OR: 2.23). ATXN2 and SH2B3 encode proteins that both interact with growth receptor tyrosine kinases. Our novel observations suggest that genotyping of SNPs at this locus may be useful for the study of ALS risk in a high percentage of individuals and that ATXN2 and SH2B3 variants may interact in modulating the disease pathway. © 2012 Lahut et al
The distinct genetic pattern of ALS in Turkey and novel mutations
PubMedID: 25681989The frequency of amyotrophic lateral sclerosis (ALS) mutations has been extensively investigated in several populations; however, a systematic analysis in Turkish cases has not been reported so far. In this study, we screened 477 ALS patients for mutations, including 116 familial ALS patients from 82 families and 361 sporadic ALS (sALS) cases. Patients were genotyped for C9orf72 (18.3%), SOD1 (12.2%), FUS (5%), TARDBP (3.7%), and UBQLN2 (2.4%) gene mutations, which together account for approximately 40% of familial ALS in Turkey. No SOD1 mutations were detected in sALS patients; however, C9orf72 (3.1%) and UBQLN2 (0.6%) explained 3.7% of sALS in the population. Exome sequencing revealed mutations in OPTN, SPG11, DJ1, PLEKHG5, SYNE1, TRPM7, and SQSTM1 genes, many of them novel. The spectrum of mutations reflect both the distinct genetic background and the heterogeneous nature of the Turkish ALS population. © 2015 Elsevier Inc.99HB0101 02OB0101 04B101D 08HB102 10B01P8 11B01P6 TUBITAK-SBAG2007 COST-TUBITAK-SBAG2007 TUBITAK-EVRENA-SBAG2009 British Association for PsychopharmacologyThis study was supported by Suna and İnan Kıraç Foundation (SVIKV) (2005–2008, 2008–2011, 2011–2014) , Bogazici University (Grant number 99HB0101 02OB0101 04B101D 08HB102 10B01P8 11B01P6) Research Funds (BAP), and The Scientific and Technological Research Council of Turkey (TUBITAK-SBAG2007 COST-TUBITAK-SBAG2007 TUBITAK-EVRENA-SBAG2009) . We gratefully acknowledge their generous contributions. We thank Ilknur Yıldız, Selda Dağdeviren, Irmak Şahbaz, Alireza Khodadadi Jamayran, Helena Alstermark, and Anna Birve for their excellent technical assistance. We extend our thanks to Professor Jeffrey D. Macklis (Harvard Medical School, MA, USA) and Professor Peter Andersen (Umea University, Umea, Sweden) for their constructive contributions to this study; to Professor Coşkun Özdemir and Dr Sevtap Savaş for the critical reading of the manuscript; and to Cemile Koçoğlu, Fulya Akçimen, and Hamid Hamzeiy for their assistance in the preparation of the figures and tables. Last but not least, we cordially thank our patients, their families, and the Turkish ALS Association for their invaluable cooperation. This study is dedicated to the memory of our esteemed collaborator Dr Hilmi Özçelik, who passed away on May 2, 2013. Appendix
Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson's disease
Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component alpha-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3'-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction
Genome-Wide Copy Number Variation In Sporadic Amyotrophic Lateral Sclerosis In The Turkish Population: Deletion Of Epha3 Is A Possible Protective Factor
The genome-wide presence of copy number variations (CNVs), which was shown to affect the expression and function of genes, has been recently suggested to confer risk for various human disorders, including Amyotrophic Lateral Sclerosis (ALS). We have performed a genome-wide CNV analysis using PennCNV tool and 733K GWAS data of 117 Turkish ALS patients and 109 matched healthy controls. Case-control association analyses have implicated the presence of both common (>5%) and rare (<5%) CNVs in the Turkish population. In the framework of this study, we identified several common and rare loci that may have an impact on ALS pathogenesis. None of the CNVs associated has been implicated in ALS before, but some have been reported in different types of cancers and autism. The most significant associations were shown for 41 kb and 15 kb intergenic heterozygous deletions (Chr11: 50,545,009–50,586,426 and Chr19: 20,860,930–20,875,787) both contributing to increased risk for ALS. CNVs in coding regions of the MAP4K3, HLA-B, EPHA3 and DPYD genes were detected however, after validation by Log R Ratio (LRR) values and TaqMan CNV genotyping, only EPHA3 deletion remained as a potential protective factor for ALS (p = 0.0065024). Based on the knowledge that EPHA4 has been previously shown to rescue SOD1 transgenic mice from ALS phenotype and prolongs survival, EPHA3 may be a promising candidate for therepuetic interventions.PubMedWoSScopu
Blood RNA biomarkers in prodromal PARK4 and apid eye movement sleep behavior disorder show role of complexin-1 loss for risk of Parkinson's disease
Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component α-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3′-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction