546 research outputs found
Germline tp53 testing in breast cancers: Why, when and how?
Germline TP53 variants represent a main genetic cause of breast cancers before 31 years of age. Development of cancer multi-gene panels has resulted in an exponential increase of germline TP53 testing in breast cancer patients. Interpretation of TP53 variants, which are mostly missense, is complex and requires excluding clonal haematopoiesis and circulating tumour DNA. In breast cancer patients harbouring germline disease-causing TP53 variants, radiotherapy contributing to the development of subsequent tumours should be, if possible, avoided and, within families, annual follow-up including whole-body MRI should be offered to carriers. We consider that, in breast cancer patients, germline TP53 testing should be performed before treatment and offered systematically only to patients with: (i) invasive breast carcinoma or ductal carcinoma in situ (DCIS) before 31; or (ii) bilateral or multifocal or HER2+ invasive breast carcinoma/DCIS or phyllode tumour before 36; or (iii) invasive breast carcinoma before 46 and another TP53 core tumour (breast cancer, soft-tissue sarcoma, osteosarcoma, central nervous system tumour, adrenocortical carcinoma); or (iv) invasive breast carcinoma before 46 and one first-or second-degree relative with a TP53 core tumour before 56. In contrast, women presenting with breast cancer after 46, without suggestive personal or familial history, should not be tested for TP53.D.G.E. and E.R.W. are supported by the Manchester NIHR Biomedical Research Centre (IS-BRC-1215-20007)
Isolation of polymorphic microsatellites in the stemless thistle (Cirsium acaule) and their utility in other Cirsium species
The genus Cirsium includes species with both widespread and restricted geographical distributions, several of which are serious weeds. Nine polymorphic microsatellite loci were isolated from the stemless thistle Cirsium acaule. Eight were polymorphic in C. acaule, six in C. arvense and seven in C. heterophyllum. One locus monomorphic in C. acaule showed polymorphism in C. heterophyllum. The mean number of alleles per locus was 4.1 in C. acaule, 6.2 in C. arvense and 2.9 in C. heterophyllum. These nine loci were also amplified in C. eriophorum and C. vulgare, suggesting that these markers may be of use throughout the genus
Characterization of variable EST SSR markers for Norway spruce (Picea abies L.)
<p>Abstract</p> <p>Background</p> <p>Norway spruce is widely distributed across Europe and the predominant tree of the Alpine region. Fast growth and the fact that timber can be harvested cost-effectively in relatively young populations define its status as one of the economically most important tree species of Northern Europe. In this study, EST derived simple sequence repeat (SSR) markers were developed for the assessment of putative functional diversity in Austrian Norway spruce stands.</p> <p>Results</p> <p>SSR sequences were identified by analyzing 14,022 publicly available EST sequences. Tri-nucleotide repeat motifs were most abundant in the data set followed by penta- and hexa-nucleotide repeats. Specific primer pairs were designed for sixty loci. Among these, 27 displayed polymorphism in a testing population of 16 <it>P. abies </it>individuals sampled across Austria and in an additional screening population of 96 <it>P. abies </it>individuals from two geographically distinct Austrian populations. Allele numbers per locus ranged from two to 17 with observed heterozygosity ranging from 0.075 to 0.99.</p> <p>Conclusions</p> <p>We have characterized variable EST SSR markers for Norway spruce detected in expressed genes. Due to their moderate to high degree of variability in the two tested screening populations, these newly developed SSR markers are well suited for the analysis of stress related functional variation present in Norway spruce populations.</p
Genic Microsatellite Markers in Brassica rapa: Development, Characterization, Mapping, and Their Utility in Other Cultivated and Wild Brassica Relatives
Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species
MiR-339-5p inhibits breast cancer cell migration and invasion in vitro and may be a potential biomarker for breast cancer prognosis
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play an important role in the regulation of cell growth, differentiation, apoptosis, and carcinogenesis. Detection of their expression may lead to identifying novel markers for breast cancer.</p> <p>Methods</p> <p>We profiled miRNA expression in three breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-468) and then focused on one miRNA, miR-339-5p, for its role in regulation of tumor cell growth, migration, and invasion and target gene expression. We then analyzed miR-339-5p expression in benign and cancerous breast tissue specimens.</p> <p>Results</p> <p>A number of miRNAs were differentially expressed in these cancer cell lines. Real-time PCR indicated that miR-339-5p expression was downregulated in the aggressive cell lines MDA-MB-468 and MDA-MB-231 and in breast cancer tissues compared with benign tissues. Transfection of miR-339-5p oligonucleotides reduced cancer cell growth only slightly but significantly decreased tumor cell migration and invasion capacity compared with controls. Real-time PCR analysis showed that BCL-6, a potential target gene of miR-339-5p, was downregulated in MDA-MB-231 cells by miR-339-5p transfection. Furthermore, the reduced miR-339-5p expression was associated with an increase in metastasis to lymph nodes and with high clinical stages. Kaplan-Meier analyses found that the patients with miR-339-5p expression had better overall and relapse-free survivals compared with those without miR-339-5p expression. Cox proportional hazards analyses showed that miR-339-5p expression was an independent prognostic factor for breast cancer patients.</p> <p>Conclusions</p> <p>MiR-339-5p may play an important role in breast cancer progression, suggesting that miR-339-5p should be further evaluated as a biomarker for predicting the survival of breast cancer patients.</p
Neuronal networks provide rapid neuroprotection against spreading toxicity
Acute secondary neuronal cell death, as seen in neurodegenerative disease, cerebral ischemia (stroke) and traumatic brain injury (TBI), drives spreading neurotoxicity into surrounding, undamaged, brain areas. This spreading toxicity occurs via two mechanisms, synaptic toxicity through hyperactivity, and excitotoxicity following the accumulation of extracellular glutamate. To date, there are no fast-acting therapeutic tools capable of terminating secondary spreading toxicity within a time frame relevant to the emergency treatment of stroke or TBI patients. Here, using hippocampal neurons (DIV 15-20) cultured in microfluidic devices in order to deliver a localized excitotoxic insult, we replicate secondary spreading toxicity and demonstrate that this process is driven by GluN2B receptors. In addition to the modeling of spreading toxicity, this approach has uncovered a previously unknown, fast acting, GluN2A-dependent neuroprotective signaling mechanism. This mechanism utilizes the innate capacity of surrounding neuronal networks to provide protection against both forms of spreading neuronal toxicity, synaptic hyperactivity and direct glutamate excitotoxicity. Importantly, network neuroprotection against spreading toxicity can be effectively stimulated after an excitotoxic insult has been delivered, and may identify a new therapeutic window to limit brain damage
- …