192 research outputs found

    Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface

    Get PDF
    Contains fulltext : 205810pub.pdf (publisher's version ) (Open Access)Summary The recently discovered comammox process encompasses both nitrification steps, the aerobic oxidation of ammonia and nitrite, in a single organism. All known comammox bacteria are affiliated with Nitrospira sublineage II and can be grouped into two distinct clades, referred to as A and B, based on ammonia monooxygenase phylogeny. In this study, we report high-quality draft genomes of two novel comammox Nitrospira from the terrestrial subsurface, representing one clade A and one clade B comammox organism. The two metagenome-assembled genomes were compared with other representatives of Nitrospira sublineage II, including both canonical and comammox Nitrospira. Phylogenomic analyses confirmed the affiliation of the two novel Nitrospira with comammox clades A and B respectively. Based on phylogenetic distance and pairwise average nucleotide identity values, both comammox Nitrospira were classified as novel species. Genomic comparison revealed high conservation of key metabolic features in sublineage II Nitrospira, including respiratory complexes I?V and the machineries for nitrite oxidation and carbon fixation via the reductive tricarboxylic acid cycle. In addition, the presence of the enzymatic repertoire for formate and hydrogen oxidation in the Rifle clades A and B comammox genomes, respectively, suggest a broader distribution of these metabolic features than previously anticipated.11 p

    Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bayer, B., Saito, M. A., McIlvin, M. R., Lucker, S., Moran, D. M., Lankiewicz, T. S., Dupont, C. L., & Santoro, A. E. (2020). Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. Isme Journal, doi:10.1038/s41396-020-00828-3.The genus Nitrospira is the most widespread group of nitrite-oxidizing bacteria and thrives in diverse natural and engineered ecosystems. Nitrospira marina Nb-295T was isolated from the ocean over 30 years ago; however, its genome has not yet been analyzed. Here, we investigated the metabolic potential of N. marina based on its complete genome sequence and performed physiological experiments to test genome-derived hypotheses. Our data confirm that N. marina benefits from additions of undefined organic carbon substrates, has adaptations to resist oxidative, osmotic, and UV light-induced stress and low dissolved pCO2, and requires exogenous vitamin B12. In addition, N. marina is able to grow chemoorganotrophically on formate, and is thus not an obligate chemolithoautotroph. We further investigated the proteomic response of N. marina to low (∌5.6 ”M) O2 concentrations. The abundance of a potentially more efficient CO2-fixing pyruvate:ferredoxin oxidoreductase (POR) complex and a high-affinity cbb3-type terminal oxidase increased under O2 limitation, suggesting a role in sustaining nitrite oxidation-driven autotrophy. This putatively more O2-sensitive POR complex might be protected from oxidative damage by Cu/Zn-binding superoxide dismutase, which also increased in abundance under low O2 conditions. Furthermore, the upregulation of proteins involved in alternative energy metabolisms, including Group 3b [NiFe] hydrogenase and formate dehydrogenase, indicate a high metabolic versatility to survive conditions unfavorable for aerobic nitrite oxidation. In summary, the genome and proteome of the first marine Nitrospira isolate identifies adaptations to life in the oxic ocean and provides insights into the metabolic diversity and niche differentiation of NOB in marine environments.We thank John B. Waterbury and Frederica Valois for providing the culture of Nitrospira marina Nb-295T and for continued advice about cultivation. The N. marina genome was sequenced as part of US Department of Energy Joint Genome Institute Community Sequencing Project 1337 to CLD, AES, and MAS in collaboration with the user community. We thank Claus Pelikan for bioinformatic assistance. This research was supported by a Simons Foundation Early Career Investigator in Marine Microbiology and Evolution Award (345889) and US National Science Foundation (NSF) award OCE-1924512 to AES. Proteomics analysis was supported by NSF awards OCE-1924554 and OCE-1850719, and NIH award R01GM135709 to MAS. BB was supported by the Austrian Science Fund (FWF) Project Number: J4426-B (“The influence of nitrifiers on the oceanic carbon cycle”), SL by the Netherlands Organization for Scientific Research (NWO) grant 016.Vidi.189.050, and CLD by NSF award OCE-125999

    Proteogenomic analysis of Georgfuchsia toluolica revealed unexpected concurrent aerobic and anaerobic toluene degradation

    Get PDF
    Denitrifying Betaproteobacteria play a key role in the anaerobic degradation of monoaromatic hydrocarbons. We performed a multi-omics study to better understand the metabolism of the representative organism Georgfuchsia toluolica strain G5G6 known as a strict anaerobe coupling toluene oxidation with dissimilatory nitrate and Fe(III) reduction. Despite the genomic potential for degradation of different carbon sources, we did not find sugar or organic acid transporters, in line with the inability of strain G5G6 to use these substrates. Using a proteomics analysis, we detected proteins of fumarate-dependent toluene activation, membrane-bound nitrate reductase, and key components of the metal-reducing (Mtr) pathway under both nitrate- and Fe(III)-reducing conditions. High abundance of the multiheme cytochrome MtrC implied that a porincytochrome complex was used for respiratory Fe(III) reduction. Remarkably, strain G5G6 contains a full set of genes for aerobic toluene degradation, and we detected enzymes of aerobic toluene degradation under both nitrate- and Fe(III)-reducing conditions. We further detected an ATP-dependent benzoyl-CoA reductase, reactive oxygen species detoxification proteins, and cytochrome c oxidase indicating a facultative anaerobic lifestyle of strain G5G6. Correspondingly, we found diffusion through the septa a substantial source of oxygen in the cultures enabling concurrent aerobic and anaerobic toluene degradation by strain G5G6.This work was supported by Wageningen University & Research through its investment theme Resilience, the Technology Foundation (STW), the Applied Science Division of the Dutch Research Council (NWO; project 08053), NWO grant 016.Vidi.189.050, and a Gravitation grant of the Netherlands Ministry of Education, Culture and Science and NWO (project 024.002.002 SIAM). B.K. was supported by the Villum foundation, Denmark (VYI Grant 25491).info:eu-repo/semantics/publishedVersio

    Methylotetracoccus oryzae Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments

    Get PDF
    Methane-oxidizing microorganisms perform an important role in reducing emissions of the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib, and type II methanotrophs. Type Ia and type II are well represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs have not been able to be cultivated so far. Here, we compared the distributions of type Ib lineages in different environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in landfill and upland soils, lineages that are not represented by isolates are mostly dominant in freshwater environments, such as paddy fields and lake sediments. Thus, we observed a clear niche differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a pure culture of a novel type Ib methanotroph, tentatively named “Methylotetracoccus oryzae” C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, containing C_(16:1)ω9c as the major membrane phospholipid fatty acid, which has not been found in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in freshwater ecosystems

    Influence of filter age on Fe, Mn and NH4+ removal in dual media rapid sand filters used for drinking water production

    Get PDF
    Rapid sand filtration is a common method for removal of iron (Fe), manganese (Mn) and ammonium (NH4+) from anoxic groundwaters used for drinking water production. In this study, we combine geochemical and microbiological data to assess how filter age influences Fe, Mn and NH4+ removal in dual media filters, consisting of anthracite overlying quartz sand, that have been in operation for between ∌2 months and ∌11 years. We show that the depth where dissolved Fe and Mn removal occurs is reflected in the filter medium coatings, with ferrihydrite forming in the anthracite in the top of the filters ( 1 m). Removal of NH4+ occurs through nitrification in both the anthracite and sand and is the key driver of oxygen loss. Removal of Fe is independent of filter age and is always efficient (> 97% removal). In contrast, for Mn, the removal efficiency varies with filter age, ranging from 9 to 28% at ∌2–3 months after filter replacement to 100% after 8 months. After 11 years, removal reduces to 60–80%. The lack of Mn removal in the youngest filters (at 2–3 months) is likely the result of a relatively low abundance of mineral coatings that adsorb Mn2+ and provide surfaces for the establishment of a microbial community. 16S rRNA gene amplicon sequencing shows that Gallionella, which are known Fe2+ oxidizers, are present after 2 months, yet Fe2+ removal is mostly chemical. Efficient NH4+ removal (> 90%) establishes within 3 months of operation but leakage occurs upon high NH4+loading (> 160 ”M). Two-step nitrification by Nitrosomonas and Candidatus Nitrotoga is likely the most important NH4+ removal mechanism in younger filters during ripening (2 months), after which complete ammonia oxidation by Nitrospira and canonical two-step nitrification occur simultaneously in older filters. Our results highlight the strong effect of filter age on especially Mn2+but also NH4+ removal. We show that ageing of filter medium leads to the development of thick coatings, which we hypothesize leads to preferential flow, and breakthrough of Mn2+. Use of age-specific flow rates may increase the contact time with the filter medium in older filters and improve Mn2+ and NH4+ removal

    Efficient chemical and microbial removal of iron and manganese in a rapid sand filter and impact of regular backwash

    Get PDF
    Aeration followed by rapid sand filtration is a common method in drinking water treatment to remove iron (Fe) and manganese (Mn) from anoxic groundwater. To ensure the successful removal of Fe and Mn within a single filter, several factors such as raw water characteristics, backwash procedures and chemical and microbial interactions with the filter medium need to be considered. Here, we assess the characteristics of a single medium rapid sand filter with highly efficient removal of Fe and Mn. Using synchrotron X-ray spectroscopy, we show that formation of ferrihydrite-type Fe oxides in the top of the filter (0–50 cm) accounts for >95 % of the removal of dissolved Fe2+ in the filter. Birnessite-type Mn- oxides, which are thought to be biogenic, form over a wider depth interval (0–110 cm). Results of 16S rRNA gene amplicon sequencing indicate a corresponding distinct vertical stratification of the microbial community, with potential iron-oxidizing Gallionella, Leptothrix and Sideroxydans dominating in the upper part of the filter, and nitrifiers being more prevalent deeper in the filter. Besides Fe and Mn-oxide, Fe-flocs and bacteriological hollow sheets form in the upper part of the filter. Both the Fe-flocs, hollow Fe-sheets and part of the Fe and Mn coatings are removed through backwashing, thereby reducing the pressure difference measured over the filter medium linked to clogging of pores (from 14 kPa to 1.5 kPa) and ensuring continued water flow. Backwashing removes part of the Gallionella, but this does not negatively impact the filter performance. Strikingly, SEM imaging with EDS mapping revealed alternating layers of Fe and Mn-oxides on the coated grains throughout the filter. This indicates slow mixing of the filter medium between the upper 30 cm and the rest of the filter during backwashing. Slow mixing likely contributes to continued success of the filter by ensuring homogeneous filter bed growth, while still allowing for stratification of the microbial community

    Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling

    Get PDF
    Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a ÎČ-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11–homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-d-xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids
    • 

    corecore