8 research outputs found

    Photosynthetic quantum efficiency in south‐eastern Amazonian trees may be already affected by climate change

    Get PDF
    Tropical forests are experiencing unprecedented high‐temperature conditions due to climate change that could limit their photosynthetic functions. We studied the high‐temperature sensitivity of photosynthesis in a rainforest site in southern Amazonia, where some of the highest temperatures and most rapid warming in the Tropics have been recorded. The quantum yield (F v /F m ) of photosystem II was measured in seven dominant tree species using leaf discs exposed to varying levels of heat stress. T 50 was calculated as the temperature at which F v /F m was half the maximum value. T 5 is defined as the breakpoint temperature, at which F v /F m decline was initiated. Leaf thermotolerance in the rapidly warming southern Amazonia was the highest recorded for forest tree species globally. T 50 and T 5 varied between species, with one mid‐storey species, Amaioua guianensis , exhibiting particularly high T 50 and T 5 values. While the T 50 values of the species sampled were several degrees above the maximum air temperatures experienced in southern Amazonia, the T 5 values of several species are now exceeded under present‐day maximum air temperatures

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Exercise and possible molecular mechanisms of protection from vascular disease and diabetes : the central role of ROS and nitric oxide

    No full text
    It is now widely accepted that hypertension and endothelial dysfunction are associated with an insulin-resistant state and thus with the development of T2DM (Type 2 diabetes mellitus). Insulin signalling is impaired in target cells and tissues, indicating that common molecular signals are involved. The free radical NO* regulates cell metabolism, insulin signalling and secretion, vascular tone, neurotransmission and immune system function. NO* synthesis is essential for vasodilation, the maintenance of blood pressure and glucose uptake and, thus, if levels of NO* are decreased, insulin resistance and hypertension will result. Decreased blood levels of insulin, increased AngII (angiotensin II), hyperhomocysteinaemia, increased ADMA (asymmetric omega-NG,NG-dimethylarginine) and low plasma L-arginine are all conditions likely to decrease NO* production and which are associated with diabetes and cardiovascular disease. We suggest in the present article that the widely reported beneficial effects of exercise in the improvement of metabolic and cardiovascular health are mediated by enhancing the flux of muscle- and kidney-derived amino acids to pancreatic and vascular endothelial cells aiding the intracellular production of NO*, therefore resulting in normalization of insulin secretion, vascular tone and insulin sensitivity. Exercise may also have an impact on AngII and ADMA signalling and the production of pro- and anti-inflammatory cytokines in muscle, so reducing the progression and development of vascular disease and diabetes. NO* synthesis will be increased during exercise in the vascular endothelial cells so promoting blood flow. We suggest that exercise may promote improvements in health due to positive metabolic and cytokine-mediated effects

    Amino acid supplementation and impact on immune function in the context of exercise

    Get PDF
    Moderate and chronic bouts of exercise may lead to positive metabolic, molecular, and morphological adaptations, improving health. Although exercise training stimulates the production of reactive oxygen species (ROS), their overall intracellular concentration may not reach damaging levels due to enhancement of antioxidant responses. However, inadequate exercise training (i.e., single bout of high-intensity or excessive exercise) may result in oxidative stress, muscle fatigue and muscle injury. Moreover, during the recovery period, impaired immunity has been reported, for example; excessive-inflammation and compensatory immunosuppression. Nutritional supplements, sometimes referred to as immuno-nutrients, may be required to reduce immunosuppression and excessive inflammation. Herein, we discuss the action and the possible targets of key immuno-nutrients such as L-glutamine, L-arginine, branched chain amino acids (BCAA) and whey protein
    corecore