257 research outputs found
Nonequilibrium translational effects in evaporation and condensation
This paper shows how mesoscopic nonequilibrium thermodynamics can be applied
to condensation and evaporation. By extending the normal set of thermodynamic
variables with two internal variables, we are able to give a new theoretical
foundation for a mechanism of condensation that has been proposed from
molecular simulation results. The flux does not follow a simple Arrhenius
formula for small activation energies which are relevant here.Comment: To appear in J. Chem. Phy
Unifying thermodynamic and kinetic descriptions of single-molecule processes: RNA unfolding under tension
We use mesoscopic non-equilibrium thermodynamics theory to describe RNA
unfolding under tension. The theory introduces reaction coordinates,
characterizing a continuum of states for each bond in the molecule. The
unfolding considered is so slow that one can assume local equilibrium in the
space of the reaction coordinates. In the quasi-stationary limit of high
sequential barriers, our theory yields the master equation of a recently
proposed sequential-step model. Non-linear switching kinetics is found between
open and closed states. Our theory unifies the thermodynamic and kinetic
descriptions and offers a systematic procedure to characterize the dynamics of
the unfolding processComment: 13 pages, 3 figure
Seebeck coefficients of cells with lithium carbonate and gas electrodes
AbstractThe Seebeck coefficient is reported for thermoelectric cells with gas electrodes and a molten electrolyte of one salt, lithium carbonate, at an average temperature of 750°C. We show that the coefficient, which is 0.88mVK−1, can be further increased by adding an inorganic oxide powder to the electrolyte. We interpret the measurements using the theory of irreversible thermodynamics and find that the increase in the Seebeck coefficient is due to a reduction in the transported entropy of the carbonate ion when adding solid particles to the alkali carbonate. Oxides of magnesium, cerium and lithium aluminate lead to a reduction in the transported entropy from 232±12 to around 200±4JK−1mol−1. This is of importance for design of thermoelectric converters
Evaporation boundary conditions for the R13 equations of rarefied gas dynamics
The regularized 13 moment (R13) equations are a macroscopic model for the description of rarefied gas flows in the transition regime. The equations have been shown to give meaningful results for Knudsen numbers up to about 0.5. Here, their range of applicability is extended by deriving and testing boundary conditions for evaporating and condensing interfaces. The macroscopic interface conditions are derived from the microscopic interface conditions of kinetic theory. Tests include evaporation into a half-space and evaporation/condensation of a vapor between two liquid surfaces of different temperatures. Comparison indicates that overall the R13 equations agree better with microscopic solutions than classical hydrodynamics
- …