280 research outputs found

    Immunoreactivity of the AAA plus chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals

    Get PDF
    Citation: Krajewska, J., Arent, Z., Wieckowski, D., Zolkiewski, M., & Kedzierska-Mieszkowska, S. (2016). Immunoreactivity of the AAA plus chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals. Bmc Microbiology, 16, 8. doi:10.1186/s12866-016-0774-8Leptospira interrogans is a spirochaete responsible for leptospirosis in mammals. The molecular mechanisms of the Leptospira virulence remain mostly unknown. Recently, it has been demonstrated that L. interrogans ClpB (ClpB(Li)) is essential for bacterial survival under stressful conditions and also during infection. The aim of this study was to provide further insight into the role of ClpB in L. interrogans and answer the question whether ClpB(Li) as a potential virulence factor may be a target of the humoral immune response during leptospiral infections in mammals. Results: ClpB(Li) consists of 860 amino acid residues with a predicted molecular mass of 96.3 kDa and shows multi-domain organization similar to that of the well-characterized ClpB from Escherichia coli. The amino acid sequence identity between ClpB(Li) and E. coli ClpB is 52 %. The coding sequence of the clpB(Li) gene was cloned and expressed in E. coli BL21(DE3) strain. Immunoreactivity of the recombinant ClpB(Li) protein was assessed with the sera collected from Leptospira-infected animals and uninfected healthy controls. Western blotting and ELISA analysis demonstrated that ClpB(Li) activates the host immune system, as evidenced by an increased level of antibodies against ClpB(Li) in the sera from infected animals, as compared to the control group. Additionally, ClpB(Li) was found in kidney tissues of Leptospira-infected hamsters. Conclusions: ClpB(Li) is both synthesized and immunogenic during the infectious process, further supporting its involvement in the pathogenicity of Leptospira. In addition, the immunological properties of ClpB(Li) point to its potential value as a diagnostic antigen for the detection of leptospirosis

    MOSEM2 project: Integration of data acquisition, modelling, simulation and animation for learning electromagnetism and superconductivity

    Get PDF
    The MOSEM2 project, funded by European Commission, seeks to extend the minds-on experiments and materials from the twin project MOSEM by adding a set of computer aided activities covering a series of topics in Electromagnetism and Superconductivity. The new activities will integrate different ICT technologies: data logging, data video, modelling, simulation and animation. The MOSEM2 primarily targets physics teachers in upper secondary schools and trainee physics teachers. Teacher training departments at universities will implement the teacher seminars and new materials developed in the project. During theWS4 workshop held at MPTL 14 examples of teaching and learning activities from MOSEM2 were demonstrated

    The C-terminal domain of the Escherichia coli RNA polymerase Ξ± subunit plays a role in the CI-dependent activation of the bacteriophage Ξ» pM promoter

    Get PDF
    The bacteriophage Ξ» pM promoter is required for maintenance of the Ξ» prophage in Escherichia coli, as it facilitates transcription of the cI gene, encoding the Ξ» repressor (CI). CI levels are maintained through a transcriptional feedback mechanism whereby CI can serve as an activator or a repressor of pM. CI activates pM through cooperative binding to the OR1 and OR2 sites within the OR operator, with the OR2-bound CI dimer making contact with domain 4 of the RNA polymerase Οƒ subunit (Οƒ4). Here we demonstrate that the 261 and 287 determinants of the C-terminal domain of the RNA polymerase Ξ± subunit (Ξ±CTD), as well as the DNA-binding determinant, are important for CI-dependent activation of pM. We also show that the location of Ξ±CTD at the pM promoter changes in the presence of CI. Thus, in the absence of CI, one Ξ±CTD is located on the DNA at position βˆ’44 relative to the transcription start site, whereas in the presence of CI, Ξ±CTD is located at position βˆ’54, between the CI-binding sites at OR1 and OR2. These results suggest that contacts between CI and both Ξ±CTD and Οƒ are required for efficient CI-dependent activation of pM

    Bacterial lipopolysaccharide inhibits influenza virus infection of human macrophages and the consequent induction of CD8+ T cell immunity

    Get PDF
    Item does not contain fulltextIt is well established that infection with influenza A virus (IAV) facilitates secondary bacterial disease. However, there is a growing body of evidence that the microbial context in which IAV infection occurs can affect both innate and adaptive responses to the virus. To date, these studies have been restricted to murine models of disease and the relevance of these findings in primary human cells remains to be elucidated. Here, we show that pre-stimulation of primary human monocyte-derived macrophages (MDMs) with the bacterial ligand lipopolysaccharide (LPS) reduces the ability of IAV to infect these cells. The inhibition of IAV infection was associated with a reduced transcription of viral RNA and the ability of LPS to induce an anti-viral/type I interferon response in human MDMs. We demonstrated that this reduced rate of viral infection is associated with a reduced ability to present a model antigen to autologous CD8+ T cells. Taken together, these data provide the first evidence that exposure to bacterial ligands like LPS can play an important role in modulating the immune response of primary human immune cells towards IAV infection, which may then have important consequences for the development of the host's adaptive immune response

    Early Priming Minimizes the Age-Related Immune Compromise of CD8+ T Cell Diversity and Function

    Get PDF
    The elderly are particularly susceptible to influenza A virus infections, with increased occurrence, disease severity and reduced vaccine efficacy attributed to declining immunity. Experimentally, the age-dependent decline in influenza-specific CD8+ T cell responsiveness reflects both functional compromise and the emergence of β€˜repertoire holes’ arising from the loss of low frequency clonotypes. In this study, we asked whether early priming limits the time-related attrition of immune competence. Though primary responses in aged mice were compromised, animals vaccinated at 6 weeks then challenged >20 months later had T-cell responses that were normal in magnitude. Both functional quality and the persistence of β€˜preferred’ TCR clonotypes that expand in a characteristic immunodominance hierarchy were maintained following early priming. Similar to the early priming, vaccination at 22 months followed by challenge retained a response magnitude equivalent to young mice. However, late priming resulted in reduced TCRΞ² diversity in comparison with vaccination earlier in life. Thus, early priming was critical to maintaining individual and population-wide TCRΞ² diversity. In summary, early exposure leads to the long-term maintenance of memory T cells and thus preserves optimal, influenza-specific CD8+ T-cell responsiveness and protects against the age-related attrition of naΓ―ve T-cell precursors. Our study supports development of vaccines that prime CD8+ T-cells early in life to elicit the broadest possible spectrum of CD8+ T-cell memory and preserve the magnitude, functionality and TCR usage of responding populations. In addition, our study provides the most comprehensive analysis of the aged (primary, secondary primed-early and secondary primed-late) TCR repertoires published to date

    HIV-1 Promotes Intake of Leishmania Parasites by Enhancing Phosphatidylserine-Mediated, CD91/LRP-1-Dependent Phagocytosis in Human Macrophages

    Get PDF
    Over the past decade, the number of reported human immunodeficiency virus type-1 (HIV-1)/Leishmania co-infections has risen dramatically, particularly in regions where both diseases are endemic. Although it is known that HIV-1 infection leads to an increase in susceptibility to Leishmania infection and leishmaniasis relapse, little remains known on how HIV-1 contributes to Leishmania parasitaemia. Both pathogens infect human macrophages, and the intracellular growth of Leishmania is increased by HIV-1 in co-infected cultures. We now report that uninfected bystander cells, not macrophages productively infected with HIV-1, account for enhanced phagocytosis and higher multiplication of Leishmania parasites. This effect can be driven by HIV-1 Tat protein and transforming growth factor-beta (TGF-Ξ²). Furthermore, we show for the first time that HIV-1 infection increases surface expression of phosphatidylserine receptor CD91/LRP-1 on human macrophages, thereby leading to a Leishmania uptake by uninfected bystander cells in HIV-1-infected macrophage populations. The more important internalization of parasites is due to interactions between the scavenger receptor CD91/LRP-1 and phosphatidylserine residues exposed at the surface of Leishmania. We determined also that enhanced CD91/LRP-1 surface expression occurs rapidly following HIV-1 infection, and is triggered by the activation of extracellular TGF-Ξ². Thus, these results establish an intricate link between HIV-1 infection, Tat, surface CD91/LRP-1, TGF-Ξ², and enhanced Leishmania phosphatidylserine-mediated phagocytosis

    The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen

    Get PDF
    The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza

    Induction of Protective CD4+ T Cell-Mediated Immunity by a Leishmania Peptide Delivered in Recombinant Influenza Viruses

    Get PDF
    The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4+ Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK158–173 CD4+ peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK158–173-specific CD4+ T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK158–173 triggers LACK158–173-specific Th1-biased CD4+ T cell responses within an appropriate cytokine milieu (IFN-Ξ³, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2–4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-Ξ³-producing CD4+ T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK158–173 led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-Ξ³ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity

    Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling

    Get PDF
    Β© Kedzierski et al. Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza
    • …
    corecore