181 research outputs found

    Searching for annihilation radiation from SN 1006 with SPI on INTEGRAL

    Get PDF
    Historical Type Ia supernovae are a leading candidate for the source of positrons observed through their diffuse annihilation emission in the Galaxy. However, search for annihilation emission from individual Type Ia supernovae has not been possible before the improved sensitivity of \integral. The total 511 keV annihilation flux from individual SNe Ia, as well as their contribution to the overall diffuse emission, depends critically on the escape fraction of positrons produced in 56^{56}Co decays. Late optical light curves suggest that this fraction may be as high as 5%. We searched for positron annihilation radiation from the historical Type Ia supernova SN 1006 using the SPI instrument on \integral. We did not detect significant 511 keV line emission, with a 3σ\sigma flux upper limit of 0.59 x 104^{-4} ergs cm^-2 s^-1 for \wsim 1 Msec exposure time, assuming a FWHM of 2.5 keV. This upper limit corresponds to a 7.5% escape fraction, 50% higher than the expected 5% escape scenario, and rules out the possibility that Type Ia supernovae produce all of the positrons in the Galaxy (~ 12% escape fraction), if the mean positron lifetime is less than 105^{5} years. Future observations with \integral will provide stronger limits on the escape fraction of positrons, the mean positron lifetime, and the contribution of Type Ia supernovae to the overall positron content of the Galaxy.Comment: 3 pages, 2 figures, accepted for publication in ApJ

    Detection of Low-Hard State Spectral and Timing Signatures from the Black Hole X-Ray Transient XTE J1650-500 at Low X-Ray Luminosities

    Full text link
    Using the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer, we have studied the black hole candidate (BHC) X-ray transient XTE J1650-500 near the end of its 2001-2002 outburst after its transition to the low-hard state at X-ray luminosities down to L = 1.5E34 erg/s (1-9 keV, assuming a source distance of 4 kpc). Our results include a characterization of the spectral and timing properties. At the lowest sampled luminosity, we used an 18 ks Chandra observation to measure the power spectrum at low frequencies. For the 3 epochs at which we obtained Chandra/RXTE observations, the 0.5-20 keV energy spectrum is consistent with a spectral model consisting of a power-law with interstellar absorption. We detect evolution in the power-law photon index from 1.66 +/- 0.05 to 1.93 +/- 0.13 (90% confidence errors), indicating that the source softens at low luminosities. The power spectra are characterized by strong (20-35% fractional rms) band-limited noise, which we model as a zero-centered Lorentzian. Including results from an RXTE study of XTE J1650-500 near the transition to the low-hard state by Kalemci et al. (2003), the half-width of the zero-centered Lorentzian (roughly where the band-limited noise cuts off) drops from 4 Hz at L = 7E36 erg/s (1-9 keV, absorbed) to 0.067 +/- 0.007 Hz at L = 9E34 erg/s to 0.0035 +/- 0.0010 Hz at the lowest luminosity. While the spectral and timing parameters evolve with luminosity, it is notable that the general shapes of the energy and power spectra remain the same, indicating that the source stays in the low-hard state. This implies that the X-ray emitting region of the system likely keeps the same overall structure, while the luminosity changes by a factor of 470. We discuss how these results may constrain theoretical black hole accretion models.Comment: 11 pages, accepted by ApJ after minor revision

    The appearance of a compact jet in the soft-intermediate state of 4U 1543-47

    Get PDF
    Recent advancements in the understanding of jet-disc coupling in black hole candidate X-ray binaries (BHXBs) have provided close links between radio jet emission and X-ray spectral and variability behaviour. In 'soft' X-ray states the jets are suppressed, but the current picture lacks an understanding of the X-ray features associated with the quenching or recovering of these jets. Here we show that a brief, ~4 day infrared (IR) brightening during a predominantly soft X-ray state of the BHXB 4U 1543-47 is contemporaneous with a strong X-ray Type B quasi-periodic oscillation (QPO), a slight spectral hardening and an increase in the rms variability, indicating an excursion to the soft-intermediate state (SIMS). This IR 'flare' has a spectral index consistent with optically thin synchrotron emission and most likely originates from the steady, compact jet. This core jet emitting in the IR is usually only associated with the hard state, and its appearance during the SIMS places the 'jet line' between the SIMS and the soft state in the hardness-intensity diagram for this source. IR emission is produced in a small region of the jets close to where they are launched (~ 0.1 light-seconds), and the timescale of the IR flare in 4U 1543-47 is far too long to be caused by a single, discrete ejection. We also present a summary of the evolution of the jet and X-ray spectral/variability properties throughout the whole outburst, constraining the jet contribution to the X-ray flux during the decay.Comment: Accepted to MNRAS. 11 pages, 6 figure

    X-Ray Observations of SN 1006 with Integral

    Get PDF
    The remnant of the supernova of 1006 AD, the remnant first showing evidence for the presence of X-ray synchrotron emission from shock-accelerated electrons, was observed for ~1000 ksec with INTEGRAL for the study of electron acceleration to very high energies. The aim of the observation was to characterize the synchrotron emission, and attempt to detect non-thermal bremsstrahlung, using the combination of IBIS and JEM-X spatial and spectral coverage. The source was detected with JEM-X between 2.4 and 8.4 keV bands, and not detected with either ISGRI or SPI above 20 keV. The ISGRI upper limit is about a factor of four above current model predictions, but confirms the presence of steepening in the power-law extrapolated from lower energies (< 4 keV).Comment: 5 pages, 3 figures, 1 table, accepted for publication in the Astrophysical Journa

    The infrared/X-ray correlation of GX 339-4: Probing hard X-ray emission in accreting black holes

    Get PDF
    GX 339-4 has been one of the key sources for unravelling the accretion ejection coupling in accreting stellar mass black holes. After a long period of quiescence between 1999 and 2002, GX 339-4 underwent a series of 4 outbursts that have been intensively observed by many ground based observatories [radio, infrared(IR), optical] and satellites (X-rays). Here, we present results of these broad-band observational campaigns, focusing on the optical-IR (OIR)/X-ray flux correlations over the four outbursts. We found tight OIR/X-ray correlations over four decades with the presence of a break in the IR/X-ray correlation in the hard state. This correlation is the same for all four outbursts. This can be interpreted in a consistent way by considering a synchrotron self-Compton origin of the X-rays in which the break frequency varies between the optically thick and thin regime of the jet spectrum. We also highlight the similarities and differences between optical/X-ray and IR/X-ray correlations which suggest a jet origin of the near-IR emission in the hard state while the optical is more likely dominated by the blackbody emission of the accretion disc in both hard and soft state. However we find a non negligible contribution of 40 per cent of the jet emission in the V-band during the hard state. We finally concentrate on a soft-to-hard state transition during the decay of the 2004 outburst by comparing the radio, IR, optical and hard X-rays light curves. It appears that unusual delays between the peak of emission in the different energy domains may provide some important constraints on jet formation scenario.Comment: Accepted for publication in MNRAS, 12 pages, 8 figure

    Tracing the jet contribution to the mid-IR over the 2005 outburst of GRO J1655-40 via broadband spectral modeling

    Get PDF
    We present new results from a multi-wavelength (radio/infrared/optical/X-ray) study of the black hole X-ray binary GRO J1655-40 during its 2005 outburst. We detected, for the first time, mid-infrared emission at 24 um from the compact jet of a black hole X-ray binary during its hard state, when the source shows emission from a radio compact jet as well as a strong non-thermal hard X-ray component. These detections strongly constrain the optically thick part of the synchrotron spectrum of the compact jet, which is consistent with being flat over four orders of magnitude in frequency. Moreover, using this unprecedented coverage, and especially thanks to the new Spitzer observations, we can test broadband disk and jet models during the hard state. Two of the hard state broadband spectra are reasonably well fitted using a jet model with parameters overall similar to those previously found for Cyg X-1 and GX 339-4. Differences are also present; most notably, the jet power in GRO J1655-40 appears to be a factor of at least ~3-5 higher (depending on the distance) than that of Cyg X-1 and GX 339-4 at comparable disk luminosities. Furthermore, a few discrepancies between the model and the data, previously not found for the other two black hole systems for which there was no mid-IR/IR and optical coverage, are evident, and will help to constrain and refine theoretical models.Comment: accepted for publication in Ap

    Search for polarization from the prompt gamma-ray emission of GRB 041219a with SPI on INTEGRAL

    Get PDF
    Measuring the polarization of the prompt gamma-ray emission from GRBs can significantly improve our understanding of both the GRB emission mechanisms, as well as the underlying engine driving the explosion. We searched for polarization in the prompt gamma-ray emission of GRB 041219a with the SPI instrument on INTEGRAL. Using multiple-detector coincidence events in the 100--350 keV energy band, our analysis yields a polarization fraction from this GRB of 99 +- 33 %. Statistically, we cannot claim a polarization detection from this source. Moreover, different event selection criteria lead to even less significant polarization fractions, e.g. lower polarization fractions are obtained when higher energies are included in the analysis. We cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219a do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, and the techniques developed for this analysis

    State transitions in the 2001/2002 outburst of XTE J1650-500

    Full text link
    We present a study of the X-ray transient and black hole candidate XTE J1650-500 during its 2001/2002 outburst. The source made two state transitions between the hard and soft states, at luminosity levels that differed by a factor of ~5-10. The first transition, between hard and soft, lasted for ~30 days and showed two parts; one part in which the spectral properties evolve smoothly away from the hard state and another that we identify as the 'steep power law state'. The two parts showed different behavior of the Fe K emission line and QPO frequencies. The second transition, from soft to hard, lasted only \~15 days and showed no evidence of the presence of the 'steep power law state'. Comparing observations from the early rise and the decay of the outburst, we conclude that the source can be in the hard state in a range of more 10^4 in luminosity. We briefly discuss the state transitions in the framework of a two-flow model.Comment: 4 pages, 5 figures. To appear in Proc. of the II BeppoSAX Meeting: "The Restless High-Energy Universe" (Amsterdam, May 5-8, 2003), E.P.J. van den Heuvel, J.J.M. in 't Zand, and R.A.M.J. Wijers Ed
    corecore