960 research outputs found

    Residential solar air conditioning: Energy and Exergy analyses of an ammonia-water absorption cooling system

    Get PDF
    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia-water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia-water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature

    Energy efficiency and economic feasibility of an absorption air-conditioning system using wet, dry and hybrid heat rejection methods

    Get PDF
    In tropical and sub-tropical regions, air-conditioning systems account for the greatest electricity consumption and high water use. Solar-driven absorption cooling systems can conveniently reduce electricity consumption at need. The performance of this cooling system depends on the system’s heat rejection. A simulation was performed for a 15 kW single effect ammonia-water absorption cooling system driven by low temperature thermal energy and with three different heat rejection methods (wet cooling, dry cooling, and hybrid cooling). This hybrid cooling system uses wet cooling on the absorber and dry cooling on the condenser. The system performance and economics of the chiller with these cooling methods were evaluated. The analysis showed that a wet cooling system has a higher system performance and water consumption compared to a dry cooling system, which has a high primary energy consumption with no water usage. In hot weather conditions and where there is scarcity of water, hybrid cooling can consume on average 41% less electrical energy than dry cooling and 49% less water than wet cooling and the payback period compared to a wet cooling system can be less than three years

    Bubble-pump-driven LiBr-H2O and LiCl-H2O Absorption Air-Conditioning Systems

    Get PDF
    A thermally-driven bubble pump, powered by solar or waste heat energy, is a simple and efficient technique for lifting a liquid from lower to higher levels, after which it can flow by gravity. In this study, solar thermal driven pumps were incorporated in the solar collector as well as in the refrigerant cycle to provide a design of an air-conditioning system for a residential home that is independent of grid electricity. The crystallization challenge, low pressure, and low efficiency are the main downsides of bubble-pump-driven LiBr-H2O refrigeration systems, in comparison with other bubble-pump-driven diffusion absorption refrigeration systems. Therefore, a complete thermodynamic analysis of each component is necessary to improve the system performance. In this research, a thermodynamic model was developed, introducing a new absorbent-refrigerant pair (LiCl-H2O) and comparing it with LiBr-H2O, in a bubble pump operated absorption chiller driven by solar thermal energy. Under the same operating condition, the highest cooling effect and the performance of the LiCl-H2O system are 49 W and COP=0.56 compared to 34 W and COP=0.46 for a LiBr-H2O system

    Advanced Exergy Analysis Of Licl-H2O Absorption Air Conditioning System

    Get PDF
    Increasing energy demand for air conditioning due to climate change is posing a continuous threat to the environment. Absorption air-conditioning systems driven by solar thermal or waste heat energy are an alternative for providing cooling comfort in a sustainable manner. The crystallization problem of high performance LiBr-H2O absorption cooling system hinders its small-scale applications. In this study, the potential of a 10 kW LiCl-H2O absorption refrigeration system is discussed and analyzed. The new concept of advanced exergy analysis is coupled with conventional thermodynamic analyses, which provides the available potential of each component for overall system performance improvement. The analyses uncovered that only 45% of the total exergy loss is due to each component’s own internal irreversibilities, whereas the remaining is through the interaction of the irreversibilities of other components in the system. The analyses also reveal that 43% of the total exergy loss is unavoidable and 57% can be reduced by improving the overall system efficiency

    High-frequency urban measurements of molecular hydrogen and carbon monoxide in the United Kingdom

    Get PDF
    High-frequency measurements of atmospheric molecular hydrogen (H<sub>2</sub>) and carbon monoxide (CO) were made at an urban site in the United Kingdom (UK) from mid-December, 2008 until early March, 2009. Very few measurements of H<sub>2</sub> exist in the urban environment, particularly within the UK, but are an essential component in the assessment of anthropogenic emissions of H<sub>2</sub> and to a certain extent CO. These data provide detailed information on urban time-series, diurnal cycles as well as sources and sinks of both H<sub>2</sub> and CO at urban locations. High-frequency data were found to be strongly influenced by local meteorological conditions of wind speed and temperature. Diurnal cycles were found to follow transport frequency very closely due to the sites proximity to major carriageways, consequently a strong correlation was found between H<sub>2</sub> and CO mole fractions. Background subtracted mean and rush hour molar H<sub>2</sub>/CO emission ratios of 0.53±0.08 and 0.57±0.06 respectively, were calculated from linear fitting of data. The scatter plot of all H<sub>2</sub> and CO data displayed an unusual two population pattern, thought to be associated with a large industrial area 85 km to the west of the site. However, the definitive source of this two branch pattern could not be fully elucidated. H<sub>2</sub> emissions from transport in the UK were estimated to be 188±39 Gg H<sub>2</sub>/yr, with 8.1±2.3 Tg/yr of H<sub>2</sub> produced from vehicle emissions globally. H<sub>2</sub> and CO deposition velocities were calculated during stable night-time inversion events when a clear decay of both species was observed. CO was found to have a much higher deposition velocity than H<sub>2</sub>, 1.3±0.8×10<sup>−3</sup> and 2.2±1.5×10<sup>−4</sup> m s<sup>−1</sup> (1σ) respectively, going against the law of molecular diffusivity. The source of this unusual result was investigated, however no conclusive explanation was found for increased loss of CO over H<sub>2</sub> during stable night time inversion events

    New Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities

    Get PDF
    The electromagnetic polarizabilities of the nucleon are fundamental properties that describe its response to external electric and magnetic fields. They can be extracted from Compton-scattering data --- and have been, with good accuracy, in the case of the proton. In contradistinction, information for the neutron requires the use of Compton scattering from nuclear targets. Here we report a new measurement of elastic photon scattering from deuterium using quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden. These first new data in more than a decade effectively double the world dataset. Their energy range overlaps with previous experiments and extends it by 20 MeV to higher energies. An analysis using Chiral Effective Field Theory with dynamical \Delta(1232) degrees of freedom shows the data are consistent with and within the world dataset. After demonstrating that the fit is consistent with the Baldin sum rule, extracting values for the isoscalar nucleon polarizabilities and combining them with a recent result for the proton, we obtain the neutron polarizabilities as \alpha_n = [11.55 +/- 1.25(stat) +/- 0.2(BSR) +/- 0.8(th)] X 10^{-4} fm^3 and \beta_n = [3.65 -/+ 1.25(stat) +/- 0.2(BSR) -/+ 0.8(th)] X 10^{-4} fm3, with \chi^2 = 45.2 for 44 degrees of freedom.Comment: 6 pages, 3 figures, comments from Physical Review Letters Referees addresse

    Development of an RNA Interference Tool, Characterization of Its Target, and an Ecological Test of Caste Differentiation in the Eusocial Wasp Polistes

    Get PDF
    Recent advancements in genomics provide new tools for evolutionary ecological research. The paper wasp genus Polistes is a model for social insect evolution and behavioral ecology. We developed RNA interference (RNAi)-mediated gene silencing to explore proposed connections between expression of hexameric storage proteins and worker vs. gyne (potential future foundress) castes in naturally-founded colonies of P. metricus. We extended four fragments of putative hexamerin-encoding P. metricus transcripts acquired from a previous study and fully sequenced a gene that encodes Hexamerin 2, one of two proposed hexameric storage proteins of P. metricus. MALDI-TOF/TOF, LC-MSMS, deglycosylation, and detection of phosphorylation assays showed that the two putative hexamerins diverge in peptide sequence and biochemistry. We targeted the hexamerin 2 gene in 5th (last)-instar larvae by feeding RNAi-inducing double-stranded hexamerin 2 RNA directly to larvae in naturally-founded colonies in the field. Larval development and adult traits were not significantly altered in hexamerin 2 knockdowns, but there were suggestive trends toward increased developmental time and less developed ovaries, which are gyne characteristics. By demonstrating how data acquisition from 454/Roche pyrosequencing can be combined with biochemical and proteomics assays and how RNAi can be deployed successfully in field experiments on Polistes, our results pave the way for functional genomic research that can contribute significantly to learning the interactions of environment, development, and the roles they play in paper wasp evolution and behavioral ecology

    An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    Full text link
    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIgS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program, ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103
    • …
    corecore