239 research outputs found

    On the role of recombination in common-envelope ejections

    Full text link
    The energy budget in common-envelope events (CEEs) is not well understood, with substantial uncertainty even over to what extent the recombination energy stored in ionised hydrogen and helium might be used to help envelope ejection. We investigate the reaction of a red-giant envelope to heating which mimics limiting cases of energy input provided by the orbital decay of a binary during a CEE, specifically during the post-plunge-in phase during which the spiral-in has been argued to occur on a time-scale longer than dynamical. We show that the outcome of such a CEE depends less on the total amount of energy by which the envelope is heated than on how rapidly the energy was transferred to the envelope and on where the envelope was heated. The envelope always becomes dynamically unstable before receiving net heat energy equal to the envelope's initial binding energy. We find two types of outcome, both of which likely lead to at least partial envelope ejection: "runaway" solutions in which the expansion of the radius becomes undeniably dynamical, and superficially "self-regulated" solutions, in which the expansion of the stellar radius stops but a significant fraction of the envelope becomes formally dynamically unstable. Almost the entire reservoir of initial helium recombination energy is used for envelope expansion. Hydrogen recombination is less energetically useful, but is nonetheless important for the development of the dynamical instabilities. However, this result requires the companion to have already plunged deep into the envelope; therefore this release of recombination energy does not help to explain wide post-common-envelope orbits.Comment: 17 pages, 10 figures, submitted to MNRAS. Comments are welcom

    Identification of the Long-Sought Common-Envelope Events

    Full text link
    Common-envelope events (CEEs), during which two stars temporarily orbit within a shared envelope, are believed to be vital for the formation of a wide range of close binaries. For decades, the only evidence that CEEs actually occur has been indirect, based on the existence of systems that could not be otherwise explained. Here we propose a direct observational signature of CEE arising from a physical model where emission from matter ejected in a CEE is controlled by a recombination front as the matter cools. The natural range of timescales and energies from this model, as well the expected colors, light-curve shapes, ejection velocities and event rate, match those of a recently-recognized class of red transient outbursts.Comment: 6 main and 22 supplemental pages, 5 total figures, one table and 2 movies. This is the authors version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science, vol 339, 2013, http://www.sciencemag.org/content/339/6118/433.abstrac

    Aspherical supernova explosions and formation of compact black hole low-mass X-ray binaries

    Full text link
    It has been suggested that black-hole low-mass X-ray binaries (BHLMXBs) with short orbital periods may have evolved from BH binaries with an intermediate-mass secondary, but the donor star seems to always have higher effective temperatures than measured in BHLMXBs (Justham, Rappaport & Podsiadlowski 2006). Here we suggest that the secondary star is originally an intermediate-mass (\sim 2-5 M_{\sun}) star, which loses a large fraction of its mass due to the ejecta impact during the aspherical SN explosion that produced the BH. The resulted secondary star could be of low-mass (\la 1 M_{\sun}). Magnetic braking would shrink the binary orbit, drive mass transfer between the donor and the BH, producing a compact BHLMXB.Comment: 4 pages, accepted for publication in MNRAS Letter

    STROOPWAFEL: Simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources

    Get PDF
    Gravitational-wave observations of double compact object (DCO) mergers are providing new insights into the physics of massive stars and the evolution of binary systems. Making the most of expected near-future observations for understanding stellar physics will rely on comparisons with binary population synthesis models. However, the vast majority of simulated binaries never produce DCOs, which makes calculating such populations computationally inefficient. We present an importance sampling algorithm, STROOPWAFEL, that improves the computational efficiency of population studies of rare events, by focusing the simulation around regions of the initial parameter space found to produce outputs of interest. We implement the algorithm in the binary population synthesis code COMPAS, and compare the efficiency of our implementation to the standard method of Monte Carlo sampling from the birth probability distributions. STROOPWAFEL finds \sim25-200 times more DCO mergers than the standard sampling method with the same simulation size, and so speeds up simulations by up to two orders of magnitude. Finding more DCO mergers automatically maps the parameter space with far higher resolution than when using the traditional sampling. This increase in efficiency also leads to a decrease of a factor \sim3-10 in statistical sampling uncertainty for the predictions from the simulations. This is particularly notable for the distribution functions of observable quantities such as the black hole and neutron star chirp mass distribution, including in the tails of the distribution functions where predictions using standard sampling can be dominated by sampling noise.Comment: Accepted. Data and scripts to reproduce main results is publicly available. The code for the STROOPWAFEL algorithm will be made publicly available. Early inquiries can be addressed to the lead autho

    Deeper, Wider, Sharper: Next-Generation Ground-Based Gravitational-Wave Observations of Binary Black Holes

    Get PDF
    Next-generation observations will revolutionize our understanding of binary black holes and will detect new sources, such as intermediate-mass black holes. Primary science goals include: Discover binary black holes throughout the observable Universe; Reveal the fundamental properties of black holes; Uncover the seeds of supermassive black holes.Comment: 14 pages, 3 figures, White Paper Submitted to Astro2020 (2020 Astronomy and Astrophysics Decadal Survey) by GWIC 3G Science Case Team (GWIC: Gravitational Wave International Committee

    White dwarf spins from low mass stellar evolution models

    Full text link
    The prediction of the spins of the compact remnants is a fundamental goal of the theory of stellar evolution. Here, we confront the predictions for white dwarf spins from evolutionary models including rotation with observational constraints. We perform stellar evolution calculations for stars in the mass range 1... 3\mso, including the physics of rotation, from the zero age main sequence into the TP-AGB stage. We calculate two sets of model sequences, with and without inclusion of magnetic fields. From the final computed models of each sequence, we deduce the angular momenta and rotational velocities of the emerging white dwarfs. While models including magnetic torques predict white dwarf rotational velocities between 2 and 10 km s1^{-1}, those from the non-magnetic sequences are found to be one to two orders of magnitude larger, well above empirical upper limits. We find the situation analogous to that in the neutron star progenitor mass range, and conclude that magnetic torques may be required in order to understand the slow rotation of compact stellar remnants in general.Comment: Accepted for A&A Letter

    Eclipsing binaries in extrasolar planet transit surveys: the case of SuperWASP

    Full text link
    Using a comprehensive binary population synthesis scheme, we investigate the statistical properties of a sample of eclipsing binaries that is detectable by an idealised extrasolar planet transit survey with specifications broadly similar to those of the SuperWASP (Wide Angle Search for Planets) project. In this idealised survey the total number of detectable single stars in the Galactic disc is of the order of 10^6-10^7, while, for a flat initial mass ratio distribution, the total number of detectable eclipsing binaries is of the order of 10^4-10^5. The majority of the population of detectable single stars is made up of main-sequence stars (60%), horizontal-branch stars (20%), and giant-branch stars (10%). The largest contributions to the population of detectable eclipsing binaries stem from detached double main-sequence star binaries (60%), detached giant-branch main-sequence star binaries (20%), and detached horizontal-branch main-sequence star binaries (10%). The ratio of the number of eclipsing binaries to the number of single stars detectable by the idealised SuperWASP survey varies by less than a factor of 2.5 across the sky, and decreases with increasing Galactic latitude. It is found to be largest in the direction of the Galactic longitude l=-7.5deg and the Galactic latitude b=-22.5deg. We also show that the fractions of systems in different subgroups of eclipsing binaries are sensitive to the adopted initial mass ratio distribution, which is one of the poorest constrained input parameters in present-day binary population synthesis calculations. This suggests that once statistically meaningful results from transit surveys are available, they will be able to significantly improve the predictive power of population synthesis studies of interacting binaries and related objects. (abridged)Comment: Accepted for publication in MNRA

    Constraints on Type Ia Supernova Progenitor Companions from Early Ultraviolet Observations with Swift

    Full text link
    We compare early ultraviolet (UV) observations of Type Ia Supernovae (SNe Ia) with theoretical predictions for the brightness of the shock associated with the collision between SN ejecta and a companion star. Our simple method is independent of the intrinsic flux from the SN and treats the flux observed with the Swift/Ultra-Violet Optical Telescope (UVOT) as conservative upper limits on the shock brightness. Comparing this limit with the predicted flux for various shock models, we constrain the geometry of the SN progenitor-companion system. We find the model of a 1 M_sun red supergiant companion in Roche lobe overflow to be excluded at a 95% confidence level for most individual SNe for all but the most unfavorable viewing angles. For the sample of 12 SNe taken together, the upper limits on the viewing angle are inconsistent with the expected distribution of viewing angles for RG stars as the majority of companions with high confidence. The separation distance constraints do allow MS companions. A better understanding of the UV flux arising from the SN itself as well as continued UV observations of young SNe Ia will further constrain the possible progenitors of SNe Ia.Comment: accepted versio

    The Cosmic Carbon Footprint of Massive Stars Stripped in Binary Systems

    Get PDF
    The cosmic origin of carbon, a fundamental building block of life, is still uncertain. Yield predictions for massive stars are almost exclusively based on single-star models, even though a large fraction interact with a binary companion. Using the MESA stellar evolution code, we predict the amount of carbon ejected in the winds and supernovae of single and binary-stripped stars at solar metallicity. We find that binary-stripped stars are twice as efficient at producing carbon (1.5–2.6 times, depending on choices regarding the slope of the initial mass function and black hole formation). We confirm that this is because the convective helium core recedes in stars that have lost their hydrogen envelope, as noted previously. The shrinking of the core disconnects the outermost carbon-rich layers created during the early phase of helium burning from the more central burning regions. The same effect prevents carbon destruction, even when the supernova shock wave passes. The yields are sensitive to the treatment of mixing at convective boundaries, specifically during carbon-shell burning (variations up to 40%), and improving upon this should be a central priority for more reliable yield predictions. The yields are robust (variations less than 0.5%) across our range of explosion assumptions. Black hole formation assumptions are also important, implying that the stellar graveyard now explored by gravitational-wave detections may yield clues to better understand the cosmic carbon production. Our findings also highlight the importance of accounting for binary-stripped stars in chemical yield predictions and motivates further studies of other products of binary interactions
    corecore