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Gravitational-wave discovery space for black holes
The Advanced LIGO gravitational-wave (GW) detector network began observations in 2015 [1].
Since then, the first two observing runs (later including Advanced Virgo) have yielded the discovery
of ten binary black hole (BBH) systems and one binary neutron star system [2]. Already these
detections have revolutionized astrophysics of stellar-mass black holes (BHs) [3, 4], provided new
tests of general relativity [5–9], and launched the field of multimessenger GW astronomy [10, 11].

Through to the end of the next decade, this detector network will continue to be enhanced as
sensitivities reach design goals and new detectors come online [12]. In the BBH domain, we will
be able to detect a pair of 10M� BHs out to a redshift of z ' 1 [12]. The annual BBH detection
rates are forecast to be several hundreds of mergers and science benefits will compound through
accumulated observing time and growing detected samples [13–18].

Beyond this horizon, step-wise sensitivity improvements with the next generation of ground-
based GW observatories will be required if we are to pursue major science questions that cannot be
answered by the current and near-term GW facilities [e.g., 19, 20]. Current-generation GW detectors
are able to provide constraints on the merger-rate densities in the local Universe and approximate
distributions of component masses [4]; however, precise measurements of, for example, spin
magnitudes and tilts are of paramount importance to understand their origin and the evolutionary
physics of the binary system [13, 15, 16, 21–23]. This information is essential to obtain insights
on the formation channels of compact binaries. While instrumental designs are an active area
of research, we highlight here how next-generation GW ground-based detectors will enable us
to survey deeper, to observe a wider range of frequencies, and to make more precise physical
measurements and will transform the study of BBH astrophysics.

Next-generation GW observations will uncover BBHs throughout the entire Universe back
to the beginning of star formation, and will detect new source types (if they exist) beyond
stellar-mass binaries, such as intermediate-mass black holes.
• Discover binary black holes throughout the observable Universe. What is the merger

rate as a function of redshift to the beginning of the reionization era, and how does it
correlate with massive star formation, metallicity, and galaxy evolution?
• Reveal the fundamental properties of black holes. What are the mass and spin demo-

graphics of black holes throughout the Universe, are they correlated, and do they evolve
with redshift? What do they reveal about the formation and evolutionary origin of BBHs?
• Uncover the seeds of supermassive black holes. Do intermediate-mass black hole merg-

ers occur in nature, and can such black holes serve as the long sought seeds of supermassive
black holes? Is there a single thread which connects the formation of stellar-mass and
supermassive black holes?

Deeper – A survey of black holes throughout cosmic time
With a next-generation GW detector network, for the first time, we will detect BH mergers at
redshifts beyond z∼ 1 and we will measure the evolution of the BBH merger rate out to redshifts of
z & 10 [12, 24, 25]: over the entire history of the Universe. GW astronomy would thereby gain a
synoptic view of the evolution of BHs across cosmic time, beyond the peak in star-formation rate at
z∼ 2 [26] back to the cosmic dawn around z∼ 20 when the Universe was only 200 Myr old.
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Measurements of merger rate vs. redshift combined with measurements of the BHs’ physi-
cal properties at unprecedented accuracies will enable conclusive constraints on BBH formation
channels. Stellar-origin BBH formation tracks cosmic star formation [27–30], while the density
of primordial BHs is not expected to correlate with the star formation density [31, 32]; different
binary channels are predicted to lead to different distributions of delay times between formation
and merger [17, 33–40]. Therefore, determining the merger rate as a function of redshift provides a
unique insight into the lives of BBHs. Only next-generation GW detectors can survey the complete
redshift range of merging BBHs and provide a sufficiently large catalog of detections to constrain
the full BBH population and their origins.

To capture BBH mergers across the stellar mass spectrum (up to total masses of M ' 200M�)
all the way back to the end of the cosmological dark ages (z' 20), a major advance in GW detector
sensitivity is required. This cannot be delivered by the maximal sensitivity planned for the current
ground-based detector facilities. We quantify this sensitivity step by the boost factor βA+ relative
to the LIGO A+ design [41] between 5 Hz and 5 kHz (and no sensitivity outside this range). In
Figure 1, we show this boost factor, required to detect an optimally-oriented, overhead binary at a
signal-to-noise ratio (SNR) of 8, as a function of the binary’s total mass and redshift.

Figure 1: Color maps show the boost factor relative to the LIGO A+ design βA+ required to see a binary
with a given total source mass M out to given redshift. The color bar saturates at log10 βA+ = 4.5; some
high-mass systems at high redshift are not detectable for any boost factor as there is no signal above 5 Hz.
Panels are for mass ratios q = 1 (left) and q = 0.1 (right). The blue curve highlights the reach at a boost
factor of βA+ = 10. The solid and dashed white lines indicate the maximum reach of Cosmic Explorer [20]
and the Einstein Telescope [19], respectively; sources below these curves would be detectable.

The boost factors βA+ needed to acquire a complete census of BBH mergers throughout the
Universe are well within the design aspirations for next-generation designs such as Cosmic Explorer
[20] and the Einstein Telescope [19]; for these specific sensitivity assumptions, BBH mergers of
total mass M ∼ 10–40M� can be detected out to z∼ 102.

Observations of the cosmological distribution of coalescing binaries would complement planned
electromagnetic surveys designed to study stars and stellar remnants back to cosmic dawn [42–46],
as well as millihertz GW observations made by LISA [47], which can observe systems ranging
from local stellar-mass binaries (days to years before they enter the frequency range of terrestrial
detectors) [48, 49] to supermassive black hole (SMBH) systems in the centers of galaxies [50, 51].
Athena [52] and the mission concept Lynx [53] would detect SMBHs back to high redshift (z & 7);
Lynx would observe 103M� BHs to z ∼ 5 and 102M� BHs to z ∼ 2, while Athena would survey
these in the nearby Universe. Next-generation GW detectors have the unique potential to observe
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stellar-mass BH systems back to the early Universe.

Wider – Expanding the black hole mass spectrum
Electromagnetic astronomy has benefited enormously from advancing observing facilities to cover
an expanded range of frequencies. These enable new probes of previous known sources, and allow
for the discovery of new types of previously unobserved sources. Next-generation GW detectors
have the unique capability to push the frequency range down to ' 1 Hz and up to ' 5 kHz, while
improving performance across the band in between.

The merger frequency for a coalescing binary scales inversely with the mass of the binary, hence
observing at lower frequency opens up the potential of detecting more massive BHs. Reaching
down to frequencies of ' 1 Hz is the most robust means to prove the existence of intermediate-mass
black holes (IMBHs) in binaries with masses in excess of 100M� [54, 55]. The discovery of IMBHs
[56, 57] would be uniquely impactful: these could be formed through dynamical processes in star
clusters [58, 59] or from the collapse of massive metal-poor stars [60–62], and may potentially
be the seed BHs which grow into SMBHs [63–66]. SMBHs are observed up to redshift z = 7.54
[67] as quasars, at lower redshifts as active galactic nuclei [68], and today in massive galaxies in
their quiescent state [69], and cover a mass range from ∼ 104M� [70–73] up to > 1010M� [74–76].
Determining the seeds of SMBHs will help us chart how they grow, and hence the role they play
in the evolution of their host galaxies [77–80]. In particular, the observation of high-redshift BHs
with mass & 100M�, beyond the (pulsational) pair-instability mass gap [81–85], would be key to
understand not only the properties of very massive (& 250M�) metal-poor stars [86], but also the
assembly of the first massive BHs in the Universe [87].

Figure 2: Left: The waveform from the final stages of inspiral, merger and ringdown of a 100M�+100M�
BBH at a redshift of z = 10. Highlighted is the time evolution of the waveform from 3, 5 and 7 Hz. Right:
Requirements on the low-frequency noise power spectrum Sn( f ) necessary to detect an overhead, face-on
100M�+100M� BBH merging at z = 10. We assume a power-law form Sn( f ) ∝ f α extending down to a
minimum frequency fmin with the specified normalization S10 at f = 10 Hz.

In Figure 2, we illustrate the importance of sensitivity in the 1–10 Hz regime. Even with
detectors sensitive to 3 Hz, we see only one cycle of a 100M�+ 100M� circular binary with
non-spinning components at z = 10 before merger. This system is not observable above 10 Hz.
Therefore, the objective to observe the most massive stellar-origin BBHs and the potential seeds of
SMBHs early in the Universe requires new detectors sensitive to currently inaccessible frequencies
below ∼ 10 Hz, which are inaccessible to current detectors.
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The detectability of IMBHs places requirements on low-frequency sensitivity. We can model the
low-frequency noise power spectral density of the detector as a power-law Sn( f ) = S10( f/10 Hz)α

and assume that the power law extends to some minimal frequency fmin, below which the detectors
have no sensitivity. In Figure 2, we show the combination of power law α , minimum frequency
fmin and the normalisation S10 necessary to detect an optimally located and oriented merger of two
100M� IMBHs at z = 10. There is a trade-off between the power-law slope, minimal frequency,
and overall normalization, such that a range of specifications can fulfil the science requirements.

For binaries in the currently detectable mass range, observing across a broader range of fre-
quencies gives a more complete picture of their properties. The precession of component spins
misaligned with the orbital angular momentum occurs over many orbits [88, 89]. Its imprint is easier
to discern over longer inspirals, and hence becomes more apparent with low-frequency data. Orbital
eccentricity is rapidly damped through GW emission [90]. This means that it is near unmeasurably
small for current GW detectors [91]; however, by monitoring the earlier parts of inspiral, it will be
easier to detect traces of eccentricity. Both the spins and the orbital eccentricity are indicative of the
formation channel; enabling their measurement for large samples will have a transformative effect
on our ability to answer questions about BBH origins.

Sharper – High-precision measurements of binary properties
Both the sensitivity and the bandwidth of next-generation detectors will enable high-precision
measurements of the properties of individual binaries [92–94]. Parameter uncertainties are inversely
proportional to the SNR [95]. The increase in SNR made possible by the increased sensitivity will
lead to exquisite measurements of the loudest events. Increased bandwidth enables the coalescence
to be tracked for a longer time, improving estimates of quantities like the spins. Masses, spins,
merger redshifts, orbital eccentricities and (where possible) associations with host galaxies all give
complementary insights into binary physics. High-precision measurements of individual systems
allow us to make detailed studies of their origins and fundamental physics [96–99]. Combining many
events together lets us study the properties of the population. The unique and critical advantage
of GW BBH observations with next-generation detectors is the combination of high-precision
measurements for a very large number of detected sources, something that cannot be delivered by
the current detectors.

As an example, consider a highly precise reconstruction of the BH mass spectrum. At high
masses, there is predicted to be a gap between ' 45M� and ' 130M� due to (pulsational) pair-
instability supernova [83, 85, 100]. At lower masses, there is potentially a gap between the maximum
neutron star mass and the minimum stellar BH mass [101–103]. Determining the precise bounds
for these gaps would provide insight into the mechanics of supernova explosions [104–106] and
insights into the neutron star equation of state [107–111]. It can be shown [112] that: (i) for
the high-mass gap, if the desired accuracy on the mass gap boundary measurement is σg ∼ 1M�,
with a conservative individual mass uncertainty for near-threshold detections of order σm ∼ 10M�,
N & 500 detections are required; (ii) for the low-mass gap, σg ∼ 0.3M� and σm ∼ 3M�, which
would require N & 1500 BBH detections. To provide robust answers to questions regarding massive
star evolution and BBH formation, we need to trace the dependence of the boundaries of the mass
gaps on metallicity and hence redshift. Therefore, it is desirable to observe ∼ 1000 sources in
each redshift bin of width ∆z = 0.1, since we may expect knowledge of the star formation rate
and metallicity distribution at this resolution on the timescale of next-generation detectors [26].
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Figure 3: Expected rate of BBH detections Rdet per redshift bin as a function of A+ boost factor βA+, for
z = [0.4,0.5], z = [1,1.1], z = [2,2.1], z = [3,3.1]. Constant BBH merger rate densities of 53 (112, 24)
Gpc−3 yr−1 are shown with solid (dashed, dotted) curves, assuming equal component masses distributed
according to p(m) ∝ m−1.6 [4].

Observing 1000 sources in a given redshift bin would provide ∼ 3% fractional accuracy on merger
rate per redshift bin, sufficient to determine the redshift evolution of the merger rate, and constrain
details of binary evolution at that redshift [17, 18].

With this in mind, we plot the number of expected BBH detections for a next-generation detector
as a function of its boost factor relative to A+ in Figure 3. This assumes a BBH merger rate that
does not evolve in redshift and is roughly consistent with current GW observations [4]. From this,
the target of ∼ 1000 detections per redshift bin is achievable with boost factors of βA+ ∼ 10 after
only 2 years of observing time. These factors are possible only with next-generation GW detectors.

Outlook for black hole gravitational-wave astronomy
Next-generation ground-based GW detectors fulfilling the scientific objectives described here will
enable the measurement of the cosmological evolution of the mass and spin distributions of BBHs
and will allow us to probe their dependence on star formation history and metallicity evolution with
redshift. With sensitivity increases by factors of ∼ 10 we will be able to probe the complete mass
spectrum of BHs formed in merging binaries. Such detectors will enable the robust discovery of
IMBHs, if they exist, and will allow us to measure the boundaries of any mass gaps. The precise
measurements of physical properties for large numbers of BH systems back to the cosmic dawn
would lead to constraints on the physics of massive star evolution in single and binary systems (in
connection to massive stellar winds, uncertain phases of binary interactions, as well as core-collapse
supernovae and associated natal kicks), as well as to constraints on different formation channels of
merging BH binaries. The potential of also revealing the nature of seed BHs for SMBHs through
the unique, independent perspective of GW observations is exciting. Such data would complement
those from from future electromagnetic and space-based GW observatories, enabling the maximum
scientific return from these facilities. Next-generation GW detectors offer a unique opportunity
to advance the frontiers of stellar astrophysics, the fundamental physics of compact objects, and
multimessenger astronomy.
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