788 research outputs found

    Development of Thick-foil and Fine-pitch GEMs with a Laser Etching Technique

    Full text link
    We have produced thick-foil and fine-pitch gas electron multipliers (GEMs) using a laser etching technique. To improve production yield we have employed a new material, Liquid Crystal Polymer, instead of polyimide as an insulator layer. The effective gain of the thick-foil GEM with a hole pitch of 140 um, a hole diameter of 70 um, and a thickness of 100 um reached a value of 10^4 at an applied voltage of 720 V. The measured effective gain of the thick-foil and fine-pitch GEM (80 um pitch, 40 um diameter, and 100 um thick) was similar to that of the thick-foil GEM. The gain stability was measured for the thick-foil and fine-pitch GEM, showing no significant increase or decrease as a function of elapsed time from applying the high voltage. The gain stability over 3 h of operation was about 0.5%. Gain mapping across the GEM showed a good uniformity with a standard deviation of about 4%. The distribution of hole diameters across the GEM was homogeneous with a standard deviation of about 3%. There was no clear correlation between the gain and hole diameter maps.Comment: 21 pages, 9 figure

    A Great Space Weather Event in February 1730

    Get PDF
    Aims. Historical records provide evidence of extreme magnetic storms with equatorward auroral extensions before the epoch of systematic magnetic observations. One significant magnetic storm occurred on February 15, 1730. We scale this magnetic storm with auroral extension and contextualise it based on contemporary solar activity. Methods. We examined historical records in East Asia and computed the magnetic latitude (MLAT) of observational sites to scale magnetic storms. We also compared them with auroral records in Southern Europe. We examined contemporary sunspot observations to reconstruct detailed solar activity between 1729 and 1731. Results. We show 29 auroral records in East Asian historical documents and 37 sunspot observations. Conclusions. These records show that the auroral displays were visible at least down to 25.8{\deg} MLAT throughout East Asia. In comparison with contemporary European records, we show that the boundary of the auroral display closest to the equator surpassed 45.1{\deg} MLAT and possibly came down to 31.5{\deg} MLAT in its maximum phase, with considerable brightness. Contemporary sunspot records show an active phase in the first half of 1730 during the declining phase of the solar cycle. This magnetic storm was at least as intense as the magnetic storm in 1989, but less intense than the Carrington event.Comment: 30 pages, 5 figures, and 2 tables, accepted for publication in Astronomy & Astrophysics on 25 April 2018. The figures and transcriptions/translations of historical documents are partially omitted in this manuscript due to the condition of reproduction. They are available in the publisher versio

    Achieving Practical and Accurate Indoor Navigation for People with Visual Impairments

    Get PDF
    Methods that provide accurate navigation assistance to people with visual impairments often rely on instrumenting the environment with specialized hardware infrastructure. In particular, approaches that use sensor networks of Bluetooth Low Energy (BLE) beacons have been shown to achieve precise localization and accurate guidance while the structural modifications to the environment are kept at minimum. To install navigation infrastructure, however, a number of complex and time-critical activities must be performed. The BLE beacons need to be positioned correctly and samples of Bluetooth signal need to be collected across the whole environment. These tasks are performed by trained personnel and entail costs proportional to the size of the environment that needs to be instrumented. To reduce the instrumentation costs while maintaining a high accuracy, we improve over a traditional regression-based localization approach by introducing a novel, graph-based localization method using Pedestrian Dead Reckoning (PDR) and particle filter. We then study how the number and density of beacons and Bluetooth samples impact the balance between localization accuracy and set-up cost of the navigation environment. Studies with users show the impact that the increased accuracy has on the usability of our navigation application for the visually impaired

    Impedance Analysis of Complex Formation Equilibria in Phosphatidylcholine Bilayers Containing Decanoic Acid or Decylamine

    Get PDF
    Bilayer lipid membranes composed of phosphatidylcholine and decanoic acid or phosphatidylcholine and decylamine were investigated using electrochemical impedance spectroscopy. Interaction between membrane components causes significant deviations from the additivity rule. Area, capacitance, and stability constant values for the complexes were calculated based on the model assuming 1:1 stoichiometry, and the model was validated by comparison of these values to experimental results. We established that phosphatidylcholine and decylamine form highly stable 1:1 complexes. In the case of decanoic acid-modified phosphatidylcholine membranes, complexes with stoichiometries other than 1:1 should be taken into consideration

    Reduction of data size for transmission in localization of mobile robots

    Get PDF
    In the SLAM (Simultaneous Localization and Mapping) technology, an environmental map is generated by a mobile robot. When it results in failure, it is necessary to inspect the scene. This localization and browsing require transmission of video signal to a remote place. In the system in this paper, an indoor mobile robot has two cameras. One is the "upward" which captures scenery of ceiling. The other is "forward" for scenery in front of the robot. Video signals from the cameras are encoded and transmitted from the robot to a remote server. It causes a problem that data size is too huge to be transmitted. To cope with this problem, the Functionally Layered Coding (FLC) was reported. In the existing FLC, visual motions are estimated by using the rotation invariant phase only correlation (RI-POC) technique. It can estimate two kinds of motions -translation and rotation. However, it requires doubled computational complexity and many components to be transmitted. In this paper, we analyze relation between kinetic movements of a robot and visual motions observed in videos, and propose to replace RI-POC by a simple POC. It was confirmed that the proposed method reduced data size for transmission to 61.6%

    Development of Resistive Electrode Gas Electron Multiplier (RE-GEM)

    Get PDF
    We successfully produced Resistive-Electrode Gas Electron Multiplier (RE-GEM) which has resistive electrodes instead of the metal ones which are employed for the standard GEM foils. RE-GEM has a resistive electrode of 25 micron-thick and an insulator layer of 100 micron-thick. The hole structure of RE-GEM is a single conical with the wider and narrower hole diameters of 80 micron and 60 micron, respectively. A hole pitch of RE-GEM is 140 micron. We obtained the maximum gain of about 600 and the typical energy resolution of about 20% (FWHM) at an applied voltage between the resistive electrodes of 620 V, using a collimated 8 keV X-rays from a generator in a gas mixture of 70% Ar and 30% CO2 by volume at the atmospheric pressure. We measured the effective gain as a function of the electric field of the drift region and obtained the maximum gain at an drift field of 0.5 kV/cm
    corecore