54 research outputs found

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Serum uri acid: neuroprotection in thrombolysis. The Bergen NORSTROKE study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A possible synergic role of serum uric acid (SUA) with thrombolytic therapies is controversial and needs further investigations. We therefore evaluated association of admission SUA with clinical improvement and clinical outcome in patients receiving rt-PA, early admitted patients not receiving rt-PA, and patients admitted after time window for rt-PA.</p> <p>Methods</p> <p>SUA levels were obtained at admission and categorized as low, middle and high, based on 33° and 66° percentile values. Patients were categorized as patients admitted within 3 hours of symptom onset receiving rt-PA (rt-PA group), patients admitted within 3 hours of symptom onset not receiving rt-PA (non-rt-PA group), and patients admitted after time window for rt-PA (late group). Short-term clinical improvement was defined as the difference between NIHSS on admission minus NIHSS day 7. Favorable outcome was defined as mRS 0 - 3 and unfavorable outcome as mRS 4 - 6.</p> <p>Results</p> <p>SUA measurements were available in 1136 patients. Clinical improvement was significantly higher in patients with high SUA levels at admission. After adjustment for possible confounders, SUA level showed a positive correlation with clinical improvement (r = 0.012, 95% CI 0.002-0.022, p = 0.02) and was an independent predictor for favorable stroke outcome (OR 1.004; 95% CI 1.0002-1.009; p = 0.04) only in the rt-PA group.</p> <p>Conclusions</p> <p>SUA may not be neuroprotective alone, but may provide a beneficial effect in patients receiving thrombolysis.</p

    Temporal profile of body temperature in acute ischemic stroke: relation to stroke severity and outcome

    Get PDF
    BACKGROUND: Pyrexia after stroke (temperature ≥37.5°C) is associated with poor prognosis, but information on timing of body temperature changes and relationship to stroke severity and subtypes varies. METHODS: We recruited patients with acute ischemic stroke, measured stroke severity, stroke subtype and recorded four-hourly tympanic (body) temperature readings from admission to 120 hours after stroke. We sought causes of pyrexia and measured functional outcome at 90 days. We systematically summarised all relevant previous studies. RESULTS: Amongst 44 patients (21 males, mean age 72 years SD 11) with median National Institute of Health Stroke Score (NIHSS) 7 (range 0–28), 14 had total anterior circulation strokes (TACS). On admission all patients, both TACS and non-TACS, were normothermic (median 36.3°C vs 36.5°C, p=0.382 respectively) at median 4 hours (interquartile range, IQR, 2–8) after stroke; admission temperature and NIHSS were not associated (r(2)=0.0, p=0.353). Peak temperature, occurring at 35.5 (IQR 19.0 to 53.8) hours after stroke, was higher in TACS (37.7°C) than non-TACS (37.1°C, p<0.001) and was associated with admission NIHSS (r(2)=0.20, p=0.002). Poor outcome (modified Rankin Scale ≥3) at 90 days was associated with higher admission (36.6°C vs. 36.2°C p=0.031) and peak (37.4°C vs. 37.0°C, p=0.016) temperatures. Sixteen (36%) patients became pyrexial, in seven (44%) of whom we found no cause other than the stroke. CONCLUSIONS: Normothermia is usual within the first 4 hours of stroke. Peak temperature occurs at 1.5 to 2 days after stroke, and is related to stroke severity/subtype and more closely associated with poor outcome than admission temperature. Temperature-outcome associations after stroke are complex, but normothermia on admission should not preclude randomisation of patients into trials of therapeutic hypothermia

    Vegetal fibers in polymeric composites: a review

    Full text link

    Designing Antibacterial Peptides with Enhanced Killing Kinetics

    No full text
    Antimicrobial peptides (AMPs) are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP) family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD) simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide
    corecore