120 research outputs found
Developing the Svalbard Integrated Arctic Earth Observing System (SIOS)
Based on the ongoing large climatic and environmental changes and the history of science coordination in Svalbard leading to the development of Svalbard Integrated Arctic Earth Observing System (SIOS), we present an overview of the current gaps in knowledge and infrastructure based on a synthesis of the recommendations presented in the annual State of Environmental Science in Svalbard (SESS) reporting of SIOS. Recommendations from the first 4 years of SESS reporting represent the point of view of the wide scientific community operating the large observing system implemented in Svalbard (SIOS) since 2018 and aim to identify the scientific potential to further develop the observing system. The recommendations are bottom-up inputs for a continuous process that aims to accomplish the vision and mission of SIOS: optimizing, integrating and further developing the observing system in an Earth system science (ESS) perspective. The primary outcome of the synthesis work is the evidence that ESS in SIOS has, during the first 4 years of operation, naturally developed from individual scientists or smaller groups of scientists to larger disciplinary international groups of scientists working together within the different environments (the atmosphere, the cryosphere, and marine and terrestrial environments). It is clear that strategic efforts towards interdisciplinarity are necessary for operating fully at ESS scale in Svalbard. As Svalbard is experiencing the largest ongoing warming in the Arctic and worldwide, SIOS is in a unique position to perform a full-scale study of all processes impacting ESS dynamics and controlling the water cycle using all parts of the SIOS observation network, with a large potential for increasing the understanding of key mechanisms in the Earth system. We also identify the potential to upscale Svalbard-based observations collected in SIOS to pan-Arctic and global scales, contributing to full-scale ESS.</p
Geo-mapping of caries risk in children and adolescents - a novel approach for allocation of preventive care
<p>Abstract</p> <p>Background</p> <p>Dental caries in children is unevenly distributed within populations with a higher burden in low socio-economy groups. Thus, tools are needed to allocate resources and establish evidence-based programs that meet the needs of those at risk. The aim of the study was to apply a novel concept for presenting epidemiological data based on caries risk in the region of Halland in southwest Sweden, using geo-maps.</p> <p>Methods</p> <p>The study population consisted of 46,536 individuals between 3-19 years of age (75% of the eligible population) from whom caries data were reported in 2010. Reported dmfs/DMFS>0 for an individual was considered as the primary caries outcome. Each study individual was geo-coded with respect to his/her residence parish. A parish-specific relative risk (RR) was calculated as the observed-to-expected ratio, where the expected number of individuals with dmfs/DMFS>0 was obtained from the age- and sex-specific caries (dmfs/DMFS>0) rates for the total study population. Smoothed caries risk geo-maps, along with corresponding statistical certainty geo-maps, were produced by using the free software Rapid Inquiry Facility and the ESRI<sup>® </sup>ArcGIS system.</p> <p>Results</p> <p>The geo-maps of preschool children (3-6 years), schoolchildren (7-11 years) and adolescents (12-19 years) displayed obvious geographical variations in caries risk, albeit most marked among the preschoolers. Among the preschool children the smoothed relative risk (SmRR) varied from 0.33 to 2.37 in different parishes. With increasing age, the contrasts seemed to diminish although the gross geographical risk pattern persisted also among the adolescents (SmRR range 0.75-1.20).</p> <p>Conclusion</p> <p>Geo-maps based on caries risk may provide a novel option to allocate resources and tailor supportive and preventive measures within regions with sections of the population with relatively high caries rates.</p
Tobacco use and caries risk among adolescents - a longitudinal study in Sweden
Background: Smoking and the use of smokeless tobacco have a detrimental impact on general and oral health. The relationship to dental caries is however still unclear. As caries is a multi-factorial disease with clear life-style, socio-economic and socio-demographic gradients, the tobacco use may be a co-variable in this complex rather than a direct etiological factor. Our aim was to analyze the impact of tobacco use on caries incidence among adolescents, with consideration to socio-economic variables by residency, using epidemiological data from a longitudinal study in the region of Halland, Sweden. Methods: The study population consisted of 10,068 adolescents between 16-19 years of age from whom yearly data on caries and tobacco use (cigarette smoking and use of smokeless tobacco) were obtained during the period 2006-2012. Reported DMFS increment between 16 and 19 years of age (Delta DMFS) for an individual was considered as the primary caries outcome. The outcome data were compared for self-reported never vs. ever users of tobacco, with consideration to neighborhood-level socio-economy (4 strata), baseline (i.e., 16 years of age) DMFS and sex. The region consists of 65 parishes with various socio-economic conditions and each study individual was geo-coded with respect to his/her residence parish. Neighborhood (parish-level) socio-economy was assessed by proportion of residing families with low household purchasing power. Results:Delta DMFS differed evidently between ever and never users of tobacco (mean values: 1.8 vs. 1.2; proportion with Delta DMFS > 0: 54.2% vs. 40.5%; p < 0.0001). Significant differences were observed in each neighborhood-level socio-economic stratum. Even after controlling for baseline DMFS and sex, Delta DMFS differed highly significantly between the ever and never users of tobacco (overall p < 0.0001). Conclusion: Tobacco use was clearly associated with increased caries increment during adolescence. Hence, this factor is relevant to consider in the clinical caries risk assessment of the individual patient as well as for community health plans dealing with oral health
Expanding the cerebrospinal fluid endopeptidome
Biomarkers of neurodegenerative disorders are needed to assist in diagnosis, to monitor disease progression and therapeutic interventions, and to provide insight into disease mechanisms. One route to identify such biomarkers is by proteomic and peptidomic analysis of cerebrospinal fluid (CSF). In the current study, we performed an in-depth analysis of the human CSF endopeptidome to establish an inventory that may serve as a basis for future targeted biomarker studies. High-pH RP HPLC was employed for off-line sample prefractionation followed by low-pH nano-LC-MS analysis. Different software programs and scoring algorithms for peptide identification were employed and compared. A total of 18 031 endogenous peptides were identified at a FDR of 1%, increasing the number of known endogenous CSF peptides 10-fold compared to previous studies. The peptides were derived from 2 053 proteins of which more than 60 have been linked to neurodegeneration. Notably, among the findings were six peptides derived from microtubule-associated protein tau, three of which span the diagnostically interesting threonine-181 (Tau-F isoform). Also, 213 peptides from amyloid precursor protein were identified, 58 of which were partially or completely within the sequence of amyloid β 1-40/42, as well as 109 peptides from apolipoprotein E, spanning sequences that discriminate between the E2/E3/E4 isoforms of the protein
Controls on methane concentration and stable isotope (δ2H-CH4 and δ13C-CH4) distributions in the water columns of the Black Sea and Cariaco Basin
Methane (CH4) concentration and stable isotope (δ2H-CH4 and δ13C-CH4) depth distributions show large differences in the water columns of the Earth's largest CH4-containing anoxic basins, the Black Sea and Cariaco Basin. In the deep basins, the between-basin stable isotope differences are large, 83‰ for δ2H-CH4 and 9‰ for δ13C-CH4, and the distributions are mirror images of one another. The major sink in both basins, anaerobic oxidation of CH4, results in such extensive isotope fractionation that little direct information can be obtained regarding sources. Recent measurements of natural 14C-CH4 show that the CH4 geochemistry in both basins is dominated (∼64 to 98%) by inputs of fossil (radiocarbon-free) CH4 from seafloor seeps. We derive open-system kinetic isotope effect equations and use a one-dimensional (vertical) stable isotope box model that, along with isotope budgets developed using radiocarbon, permits a quantitative treatment of the stable isotope differences. We show that two main factors control the CH4 concentration and stable isotope differences: (1) the depth distributions of the input of CH4 from seafloor seeps and (2) anaerobic oxidation of CH4 under open-system steady state conditions in the Black Sea and open-system non-steady-state conditions in the Cariaco Basin
Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness
Systemic infection induces conserved physiological responses that include both resistance and ‘tolerance of infection’ mechanisms. Temporary anorexia associated with an infection is often beneficial, reallocating energy from food foraging towards resistance to infection or depriving pathogens of nutrients. However, it imposes a stress on intestinal commensals, as they also experience reduced substrate availability; this affects host fitness owing to the loss of caloric intake and colonization resistance (protection from additional infections). We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid α(1,2)-fucosylation of small intestine epithelial cells (IECs) in mice, which requires the sensing of TLR agonists, as well as the production of interleukin (IL)-23 by dendritic cells, activation of innate lymphoid cells and expression of fucosyltransferase 2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host’s resources to maintain host–microbial interactions during pathogen-induced stress
Designing an Awareness Display for Senior Home Care Professionals
Abstract. Home care professionals play a central role in supporting elderly people when they need help to continue living in their own homes. Using awareness systems, caregivers might better be able to consider the actual and changing needs of individual clients, and better be prepared for the home visits. In the present situation, the functional requirements on a awareness systems for professional caregivers are unknown, and caregivers tend to be unaware of the potential use of these sensor-based systems. This paper presents a case study in which the user needs are studied using a working prototype; the prototype is used to make target users experience an awareness system in their everyday work practice, and thereby enable them to better reflect upon the user needs and the potential use of these systemsWhereas caregivers were skeptical at first, they did value the prototype in the evaluation phase. In the exit interviews, the caregivers came up with an interesting list of requirements and design directions for a future awareness display
- …