1,342 research outputs found

    A new formulation of mean stress effects in fatigue

    Get PDF
    A common method of treating the mean stress effect on fatigue life is to displace the elastic line on a Manson-Coffin-Basquin diagram while retaining the position of the plastic line. Manson and Halford pointed out that this procedure implies that mean stress significantly affects the cyclic stress-strain curve. Actually, however, they showed experimentally and by more general reasoning, that mean stress has little, if any, effect on the cyclic stress-strain curve. Thus, they concluded that it is necessary to displace the plastic line as well as the elastic line in order to keep the cyclic stress-strain curve unaltered. Another way to express the common displacement of the two lines is to keep the lines in place and change the horizontal coordinate to include a term relating to the displacement. Thus, instead of life, 2N sub f, as the horizontal coordinate, a new coordinate can become 2N sub f (1-sigma sub m/sigma sub f) superscript 1/b, thereby displacing both the elastic and plastic lines by an amount (1-sigma sub m/sigma sub f) superscript 1/b where sigma sub m is the mean stress and sigma sub f is the intercept of the elastic line at N sub f = 1/2 cycles and b is the slope of the elastic line

    Technical considerations on using the large Nancay radio telescope for SETI

    Get PDF
    The Nancay decimetric Radio Telescope (NRT) in Nancay, France, is described, and its potential use for Search for Extraterrestrial Intelligence (SETI) observations is discussed. The conclusion reached is that the NRT is well suited for SETI observations because of its large collecting area, its large sky coverage, and its wideband frequency capability. However, a number of improvements are necessary in order to take full advantage of the system in carrying out an efficient SETI program. In particular, system sensitivity should be increased. This can be achieved through a series of improvements to the system, including lowering the ground pickup noise through the use of ground reflectors and more efficient feed design, and by using low-noise amplifier front ends

    CubeSats as pathfinders for planetary detection: the FIRST-S satellite

    Full text link
    The idea behind FIRST (Fibered Imager foR a Single Telescope) is to use single-mode fibers to combine multiple apertures in a pupil plane as such as to synthesize a bigger aperture. The advantages with respect to a pure imager are i) relaxed tolerance on the pointing and cophasing, ii) higher accuracy in phase measurement, and iii) availability of compact, precise, and active single-mode optics like Lithium Niobate. The latter point being a huge asset in the context of a space mission. One of the problems of DARWIN or SIM-like projects was the difficulty to find low cost pathfinders missions. But the fact that Lithium Niobate optic is small and compact makes it easy to test through small nanosats missions. Moreover, they are commonly used in the telecom industry, and have already been tested on communication satellites. The idea of the FIRST-S demonstrator is to spatialize a 3U CubeSat with a Lithium Niobate nulling interferometer. The technical challenges of the project are: star tracking, beam combination, and nulling capabilities. The optical baseline of the interferometer would be 30 cm, giving a 2.2 AU spatial resolution at distance of 10 pc. The scientific objective of this mission would be to study the visible emission of exozodiacal light in the habitable zone around the closest stars.Comment: SPIE 2014 -- Astronomical telescopes and instrumentation -- Montrea

    Back-action cancellation in interferometers by quantum locking

    Get PDF
    We show that back-action noise in interferometric measurements such as gravitational-waves detectors can be completely suppressed by a local control of mirrors motion. An optomechanical sensor with an optimized measurement strategy is used to monitor mirror displacements. A feedback loop then eliminates radiation-pressure effects without adding noise. This very efficient technique leads to an increased sensitivity for the interferometric measurement, which becomes only limited by phase noise. Back-action cancellation is furthermore insensitive to losses in the interferometer.Comment: 4 pages, 3 figures, RevTe

    Experimental observation of three-color optical quantum correlations

    Get PDF
    Quantum correlations between bright pump, signal, and idler beams produced by an optical parametric oscillator, all with different frequencies, are experimentally demonstrated. We show that the degree of entanglement between signal and idler fields is improved by using information of pump fluctuations. This is the first observation of three-color optical quantum correlations.Comment: 3 pages, 3 figure

    Noise reduction in gravitational wave interferometers using feedback

    Full text link
    We show that the quantum locking scheme recently proposed by Courty {\it et al.} [Phys. Rev. Lett. {\bf 90}, 083601 (2003)] for the reduction of back action noise is able to significantly improve the sensitivity of the next generation of gravitational wave interferometers.Comment: 12 pages, 2 figures, in print in the Special Issue of J. Opt. B on Fluctuations and Noise in Photonics and Quantum Optic

    2D photonic-crystal optomechanical nanoresonator

    Full text link
    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8 % over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265 nm-thick membrane, is used to form a compact microcavity involving the suspended nano-membrane as end mirror. The resulting cavity has a waist size smaller than 10 Ό\mum and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane
    • 

    corecore