23 research outputs found

    An intergenic non-coding RNA promoter required for histone modifications in the human ß-globin chromatin domain

    Get PDF
    Transcriptome analyses show a surprisingly large proportion of the mammalian genome is transcribed; much more than can be accounted for by genes and introns alone. Most of this transcription is non-coding in nature and arises from intergenic regions, often overlapping known protein-coding genes in sense or antisense orientation. The functional relevance of this widespread transcription is unknown. Here we characterize a promoter responsible for initiation of an intergenic transcript located approximately 3.3 kb and 10.7 kb upstream of the adult-specific human ß-globin genes. Mutational analyses in ß-YAC transgenic mice show that alteration of intergenic promoter activity results in ablation of H3K4 di- and tri-methylation and H3 hyperacetylation extending over a 30 kb region immediately downstream of the initiation site, containing the adult [delta]- and ß-globin genes. This results in dramatically decreased expression of the adult genes through position effect variegation in which the vast majority of definitive erythroid cells harbor inactive adult globin genes. In contrast, expression of the neighboring [epsilon]- and [gamma]-globin genes is completely normal in embryonic erythroid cells, indicating a developmentally specific variegation of the adult domain. Our results demonstrate a role for intergenic non-coding RNA transcription in the propagation of histone modifications over chromatin domains and epigenetic control of ß-like globin gene transcription during development

    Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

    Get PDF
    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases

    Circulating levels of soluble Fas (sCD95) are associated with risk for development of a nonresolving acute kidney injury subphenotype

    No full text
    Abstract Background Critically ill patients with acute kidney injury (AKI) can be divided into two subphenotypes, resolving or nonresolving, on the basis of the trajectory of serum creatinine. It is unknown if the biology underlying these two AKI recovery patterns is different. Methods We measured eight circulating biomarkers in plasma obtained from a cohort of patients admitted to an intensive care unit (ICU) (n = 1241) with systemic inflammatory response syndrome. The biomarkers were representative of several biologic processes: apoptosis (soluble Fas), inflammation (soluble tumor necrosis factor receptor 1, interleukin 6, interleukin 8) and endothelial dysfunction, (angiopoietin 1, angiopoietin 2, and soluble vascular cell adhesion molecule 1). We tested for associations between biomarker levels and AKI subphenotypes using relative risk regression accounting for multiple hypotheses with the Bonferroni correction. Results During the first 3 days of ICU admission, 868 (70%) subjects developed AKI; 502 (40%) had a resolving subphenotype, and 366 (29%) had a nonresolving subphenotype. Hospital mortality was 12% in the resolving subphenotype and 21% in the nonresolving subphenotype. Soluble Fas was the only biomarker associated with a nonresolving subphenotype after adjustment for age, body mass index, diabetes, and Acute Physiology and Chronic Health Evaluation III score (p = 0.005). Conclusions Identifying modifiable targets in the Fas-mediated pathway may lead to strategies for prevention and treatment of a clinically important form of AKI
    corecore