1,337 research outputs found
Real Time Evolution in Quantum Many-Body Systems With Unitary Perturbation Theory
We develop a new analytical method for solving real time evolution problems
of quantum many-body systems. Our approach is a direct generalization of the
well-known canonical perturbation theory for classical systems. Similar to
canonical perturbation theory, secular terms are avoided in a systematic
expansion and one obtains stable long-time behavior. These general ideas are
illustrated by applying them to the spin-boson model and studying its
non-equilibrium spin dynamics.Comment: Final version as accepted for publication in Phys. Rev. B (4 pages, 3
figures
Non-equilibrium dynamics of a system with Quantum Frustration
Using flow equations, equilibrium and non-equilibrium dynamics of a two-level
system are investigated, which couples via non-commuting components to two
independent oscillator baths. In equilibrium the two-level energy splitting is
protected when the TLS is coupled symmetrically to both bath. A critical
asymmetry angle separates the localized from the delocalized phase.
On the other hand, real-time decoherence of a non-equilibrium initial state
is for a generic initial state faster for a coupling to two baths than for a
single bath.Comment: 22 pages, 9 figure
Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates
We consider the lightly doped cuprates YCaBaCuO
and LaSrCuO (with ,0.04), where the presence of a
fluctuating nematic state has often been proposed as a precursor of the stripe
(or, more generically, charge-density wave) phase, which sets in at higher
doping. We phenomenologically assume a quantum critical character for the
longitudinal and transverse nematic, and for the charge-ordering fluctuations,
and investigate the effects of these fluctuations in Raman spectra. We find
that the longitudinal nematic fluctuations peaked at zero transferred momentum
account well for the anomalous Raman absorption observed in these systems in
the channel, while the absence of such effect in the channel
may be due to the overall suppression of Raman response at low frequencies,
associated with the pseudogap. While in YCaBaCuO the
low-frequency lineshape is fully accounted by longitudinal nematic collective
modes alone, in LaSrCuO also charge-ordering modes with finite
characteristic wavevector are needed to reproduce the shoulders observed in the
Raman response. This different involvement of the nearly critical modes in the
two materials suggests a different evolution of the nematic state at very low
doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201
Comment on "Zeeman-Driven Lifshitz Transition: A Model for the Experimentally Observed Fermi-Surface Reconstruction in YbRh2Si2"
In Phys. Rev. Lett. 106, 137002 (2011), A. Hackl and M. Vojta have proposed
to explain the quantum critical behavior of YbRh2Si2 in terms of a
Zeeman-induced Lifshitz transition of an electronic band whose width is about 6
orders of magnitude smaller than that of conventional metals. Here, we note
that the ultra-narrowness of the proposed band, as well as the proposed
scenario per se, lead to properties which are qualitatively inconsistent with
the salient features observed in YbRh2Si2 near its quantum critical point.Comment: 3 page
Spectral signatures of critical charge and spin fluctuations in cuprates
We discuss how Raman spectra of high temperature superconducting cuprates are
affected by nearly-critical spin and charge collective modes, which are coupled
to charge carriers near a stripe quantum critical point. We find that specific
fingerprints of nearly-critical collective modes can be observed and that the
selectivity of Raman spectroscopy in momentum space may be exploited to
distinguish the spin and charge contribution. We apply our results to discuss
the spectra of high-T_c superconducting cuprates finding that the collective
modes should have masses with substantial temperature dependence in agreement
with their nearly critical character. Moreover spin modes have larger masses
and are more diffusive than charge modes indicating that in stripes the charge
is nearly ordered, while spin modes are strongly overdamped and fluctuating
with high frequency.Comment: 6 pages and 3 figures, invited paper to the conference SCES 08,
Buzios/Rio, Brazi
Nonequilibrium Spin Dynamics in the Ferromagnetic Kondo Model
Motivated by recent experiments on molecular quantum dots we investigate the
relaxation of pure spin states when coupled to metallic leads. Under suitable
conditions these systems are well described by a ferromagnetic Kondo model.
Using two recently developed theoretical approaches, the time-dependent
numerical renormalization group and an extended ow equation method, we
calculate the real-time evolution of a Kondo spin into its partially screened
steady state. We obtain exact analytical results which agree well with
numerical implementations of both methods. Analytical expressions for the
steady state magnetization and the dependence of the long-time relaxation on
microscopic parameters are established. We find the long-time relaxation
process to be much faster in the regime of anisotropic Kondo couplings. The
steady state magnetization is found to deviate significantly from its thermal
equilibrium value.Comment: 4 pages, 3 figures, final version as accepted by Physical Review
Letter
New theoretical approaches for correlated systems in nonequilibrium
Abstract.: We review recent developments in the theory of interacting quantum many-particle systems that are not in equilibrium. We focus mainly on the nonequilibrium generalizations of the flow equation approach and of dynamical mean-field theory (DMFT). In the nonequilibrium flow equation approach one first diagonalizes the Hamiltonian iteratively, performs the time evolution in this diagonal basis, and then transforms back to the original basis, thereby avoiding a direct perturbation expansion with errors that grow linearly in time. In nonequilibrium DMFT, on the other hand, the Hubbard model can be mapped onto a time-dependent self-consistent single-site problem. We discuss results from the flow equation approach for nonlinear transport in the Kondo model, and further applications of this method to the relaxation behavior in the ferromagnetic Kondo model and the Hubbard model after an interaction quench. For the interaction quench in the Hubbard model, we have also obtained numerical DMFT results using quantum Monte Carlo simulations. In agreement with the flow equation approach they show that for weak coupling the system relaxes to a "prethermalized” intermediate state instead of rapid thermalization. We discuss the description of nonthermal steady states with generalized Gibbs ensemble
Topological phase transition in a RNA model in the de Gennes regime
We study a simplified model of the RNA molecule proposed by G. Vernizzi, H.
Orland and A. Zee in the regime of strong concentration of positive ions in
solution. The model considers a flexible chain of equal bases that can pairwise
interact with any other one along the chain, while preserving the property of
saturation of the interactions. In the regime considered, we observe the
emergence of a critical temperature T_c separating two phases that can be
characterized by the topology of the predominant configurations: in the large
temperature regime, the dominant configurations of the molecule have very large
genera (of the order of the size of the molecule), corresponding to a complex
topology, whereas in the opposite regime of low temperatures, the dominant
configurations are simple and have the topology of a sphere. We determine that
this topological phase transition is of first order and provide an analytic
expression for T_c. The regime studied for this model exhibits analogies with
that for the dense polymer systems studied by de GennesComment: 15 pages, 4 figure
Charge transfer fluctuation, wave superconductivity, and the Raman phonon in the Cuprates: A detailed analysis
The Raman spectrum of the phonon in the superconducting cuprate
materials is investigated theoretically in detail in both the normal and
superconducting phases, and is contrasted with that of the phonon. A
mechanism involving the charge transfer fluctuation between the two oxygen ions
in the CuO plane coupled to the crystal field perpendicular to the plane is
discussed and the resulting electron-phonon coupling is evaluated. Depending on
the symmetry of the phonon the weight of different parts of the Fermi surface
in the coupling is different. This provides the opportunity to obtain
information on the superconducting gap function at certain parts of the Fermi
surface. The lineshape of the phonon is then analyzed in detail both in the
normal and superconducting states. The Fano lineshape is calculated in the
normal state and the change of the linewidth with temperature below T is
investigated for a pairing symmetry. Excellent agreement is
obtained for the phonon lineshape in YBaCuO. These
experiments, however, can not distinguish between and a
highly anisotropic -wave pairing.Comment: Revtex, 21 pages + 4 postscript figures appended, tp
- …
