129 research outputs found
Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet
Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA=0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Delta r=0.8 lambda) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences
Carrier-envelope offset stable, coherently combined ytterbium-doped fiber CPA delivering 1 kW of average power
We present a carrier-envelope offset (CEO) stable ytterbium-doped fiber chirped-pulse amplification system employing the technology of coherent beam combining and delivering more than 1 kW of average power at a pulse repetition rate of 80 MHz. The CEO stability of the system is 220 mrad rms, characterized out-of-loop with an f -to-2f interferometer in a frequency offset range of 10 Hz to 20 MHz. The high-power amplification system boosts the average power of the CEO stable oscillator by five orders of magnitude while increasing the phase noise by only 100 mrad. No evidence of CEO noise deterioration due to coherent beam combining is found. Low-frequency CEO fluctuations at the chirped-pulse amplifier are suppressed by a “slow loop” feedback. To the best of our knowledge, this is the first demonstration of a coherently combined laser system delivering an outstanding average power and high CEO stability at the same time. © 2020 Optical Society of Americ
Chemical intervention in plant sugar signalling increases yield and resilience
The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function
Enhanced Characterization of the Smell of Death by Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GCxGC-TOFMS)
Soon after death, the decay process of mammalian soft tissues begins and leads to the release of cadaveric volatile compounds in the surrounding environment. The study of postmortem decomposition products is an emerging field of study in forensic science. However, a better knowledge of the smell of death and its volatile constituents may have many applications in forensic sciences. Domestic pigs are the most widely used human body analogues in forensic experiments, mainly due to ethical restrictions. Indeed, decomposition trials on human corpses are restricted in many countries worldwide. This article reports on the use of comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) for thanatochemistry applications. A total of 832 VOCs released by a decaying pig carcass in terrestrial ecosystem, i.e. a forest biotope, were identified by GCxGC-TOFMS. These postmortem compounds belong to many kinds of chemical class, mainly oxygen compounds (alcohols, acids, ketones, aldehydes, esters), sulfur and nitrogen compounds, aromatic compounds such as phenolic molecules and hydrocarbons. The use of GCxGC-TOFMS in study of postmortem volatile compounds instead of conventional GC-MS was successful
- …