231 research outputs found
Ejection of cool plasma into the hot corona
We investigate the processes that lead to the formation, ejection and fall of
a confined plasma ejection that was observed in a numerical experiment of the
solar corona. By quantifying physical parameters such as mass, velocity, and
orientation of the plasma ejection relative to the magnetic field, we provide a
description of the nature of this particular phenomenon. The time-dependent
three-dimensional magnetohydrodynamic (3D MHD) equations are solved in a box
extending from the chromosphere to the lower corona. The plasma is heated by
currents that are induced through field line braiding as a consequence of
photospheric motions. Spectra of optically thin emission lines in the extreme
ultraviolet range are synthesized, and magnetic field lines are traced over
time. Following strong heating just above the chromosphere, the pressure
rapidly increases, leading to a hydrodynamic explosion above the upper
chromosphere in the low transition region. The explosion drives the plasma,
which needs to follow the magnetic field lines. The ejection is then moving
more or less ballistically along the loop-like field lines and eventually drops
down onto the surface of the Sun. The speed of the ejection is in the range of
the sound speed, well below the Alfven velocity. The plasma ejection is
basically a hydrodynamic phenomenon, whereas the rise of the heating rate is of
magnetic nature. The granular motions in the photosphere lead (by chance) to a
strong braiding of the magnetic field lines at the location of the explosion
that in turn is causing strong currents which are dissipated. Future studies
need to determine if this process is a ubiquitous phenomenon on the Sun on
small scales. Data from the Atmospheric Imaging Assembly on the Solar Dynamics
Observatory (AIA/SDO) might provide the relevant information.Comment: 12 pages, 10 figure
Numerical simulation of the internal plasma dynamics of post-flare loops
We integrate the MHD ideal equations of a slender flux tube to simulate the
internal plasma dynamics of coronal post-flare loops. We study the onset and
evolution of the internal plasma instability to compare with observations and
to gain insight into physical processes and characteristic parameters
associated with flaring events. The numerical approach uses a finite-volume
Harten-Yee TVD scheme to integrate the 1D1/2 MHD equations specially designed
to capture supersonic flow discontinuities. We could reproduce the
observational sliding down and upwardly propagating of brightening features
along magnetic threads of an event occurred on October 1st, 2001. We show that
high--speed downflow perturbations, usually interpreted as slow magnetoacoustic
waves, could be better interpreted as slow magnetoacoustic shock waves. This
result was obtained considering adiabaticity in the energy balance equation.
However, a time--dependent forcing from the basis is needed to reproduce the
reiteration of the event which resembles observational patterns -commonly known
as quasi--periodic pulsations (QPPs)- which are related with large scale
characteristic longitudes of coherence. This result reinforces the
interpretation that the QPPs are a response to the pulsational flaring
activity.Comment: Accepted MNRAS, 10 pages, 14 figures, 1 tabl
The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing
The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV
solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission
launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm
and provides images of the low solar corona over a 54x54 arcmin field-of-view
with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is
designed to monitor all space-weather-relevant events and features in the low
solar corona. Given the limited resources of the PROBA2 microsatellite, the
SWAP telescope is designed with various innovative technologies, including an
off-axis optical design and a CMOS-APS detector. This article provides
reference documentation for users of the SWAP image data.Comment: 26 pages, 9 figures, 1 movi
Torsional Alfven waves in stratified and expanding magnetic flux tubes
The effects of both density stratification and magnetic field expansion on
torsional Alfven waves in magnetic flux tubes are studied. The frequencies, the
period ratio P1/P2 of the fundamental and its first-overtone, and
eigenfunctions of torsional Alfven modes are obtained. Our numerical results
show that the density stratification and magnetic field expansion have opposite
effects on the oscillating properties of torsional Alfven waves.Comment: 13 pages, 7 figures, Accepted for publication in Astrophysics and
Space Scienc
Prominence-cavity regions observed using SWAP 174A filtergrams and simultaneous eclipse flash spectra
Images from the SWAP (Proba 2 mission) taken at 174A in the Fe IX/X lines are
compared to simultaneous slitless flash spectra taken during the last solar
total eclipse of July, 11th 2010. Many faint low excitation emission lines
together with the HeI and HeII Paschen Alpha chromospheric lines are recorded
on eclipse spectra where regions of limb prominences are obtained with
space-borne imagers. We consider a deep flash spectrum obtained by summing 80
individual spectra to show the intensity modulations of the continuum.
Intensity depressions are observed around the prominences in both eclipse and
SWAP images. The prominence cavities are interpreted as a relative depression
of plasma density, produced inside the corona surrounding the prominences.
Photometric measurements are shown at different scales and different,
spectrally narrow, intervals for both the prominences and the coronal
background.Comment: 22 pages, 14 figures, accepted to publish in Sol. Phy
On-disk coronal rain
Small and elongated, cool and dense blob-like structures are being reported
with high resolution telescopes in physically different regions throughout the
solar atmosphere. Their detection and the understanding of their formation,
morphology and thermodynamical characteristics can provide important
information on their hosting environment, especially concerning the magnetic
field, whose understanding constitutes a major problem in solar physics. An
example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium
observed in active region loops, which consists of cool and dense chromospheric
blobs falling along loop-like paths from coronal heights. So far, only off-limb
coronal rain has been observed and few reports on the phenomenon exist. In the
present work, several datasets of on-disk H{\alpha} observations with the CRisp
Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are
analyzed. A special family of on-disk blobs is selected for each dataset and a
statistical analysis is carried out on their dynamics, morphology and
temperatures. All characteristics present distributions which are very similar
to reported coronal rain statistics. We discuss possible interpretations
considering other similar blob-like structures reported so far and show that a
coronal rain interpretation is the most likely one. Their chromospheric nature
and the projection effects (which eliminate all direct possibility of height
estimation) on one side, and their small sizes, fast dynamics, and especially,
their faint character (offering low contrast with the background intensity) on
the other side, are found as the main causes for the absence until now of the
detection of this on-disk coronal rain counterpart.Comment: 18 pages, 10 figures. Accepted for Solar Physic
Excitation of standing kink oscillations in coronal loops
In this work we review the efforts that have been done to study the
excitation of the standing fast kink body mode in coronal loops. We mainly
focus on the time-dependent problem, which is appropriate to describe flare or
CME induced kink oscillations. The analytical and numerical studies in slab and
cylindrical loop geometries are reviewed. We discuss the results from very
simple one-dimensional models to more realistic (but still simple) loop
configurations. We emphasise how the results of the initial value problem
complement the eigenmode calculations. The possible damping mechanisms of the
kink oscillations are also discussed
Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)
The \textit{Sun Watcher using Active Pixel system detector and Image
Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2}
(PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel
centered at 174 \AA. These data, together with \textit{Atmospheric Imaging
Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on
board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics
of coronal bright points. The evolution of the magnetic polarities and
associated changes in morphology are studied using magnetograms and
multi-wavelength imaging. The morphology of the bright points seen in
low-resolution SWAP images and high-resolution AIA images show different
structures, whereas the intensity variations with time show similar trends in
both SWAP 174 and AIA 171 channels. We observe that bright points are seen in
EUV channels corresponding to a magnetic-flux of the order of Mx. We
find that there exists a good correlation between total emission from the
bright point in several UV\todash EUV channels and total unsigned photospheric
magnetic flux above certain thresholds. The bright points also show periodic
brightenings and we have attempted to find the oscillation periods in bright
points and their connection to magnetic flux changes. The observed periods are
generally long (10\todash 25 minutes) and there is an indication that the
intensity oscillations may be generated by repeated magnetic reconnection
Resonant Absorption of Axisymmetric Modes in Twisted Magnetic Flux Tubes
It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves
A virtual appliance as proxy pipeline for the Solar Orbiter/Metis coronagraph
Metis is the coronagraph on board Solar Orbiter, the ESA mission devoted to the study of the Sun that will be launched in October 2018. Metis is designed to perform imaging of the solar corona in the UV at 121.6 nm and in the visible range where it will accomplish polarimetry studies thanks to a variable retarder plate. Due to mission constraints, the telemetry downlink on the spacecraft will be limited and data will be downloaded with delays that could reach, in the worst case, several months. In order to have a quick overview on the ongoing operations and to check the safety of the 10 instruments on board, a high-priority downlink channel has been foreseen to download a restricted amount of data. These so-called Low Latency Data will be downloaded daily and, since they could trigger possible actions, they have to be quickly processed on ground as soon as they are delivered. To do so, a proper processing pipeline has to be developed by each instrument. This tool will then be integrated in a single system at the ESA Science Operation Center that will receive the downloaded data by the Mission Operation Center. This paper will provide a brief overview of the on board processing and data produced by Metis and it will describe the proxy-pipeline currently under development to deal with the Metis low-latency data
- …