19 research outputs found

    Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Get PDF
    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed

    Historical epidemiology of hepatitis C virus (HCV) in selected countries

    No full text
    Chronic infection with hepatitis C virus (HCV) is a leading indicator for liver disease. New treatment options are becoming available, and there is a need to characterize the epidemiology and disease burden of HCV. Data for prevalence, viremia, genotype, diagnosis and treatment were obtained through literature searches and expert consensus for 16 countries. For some countries, data from centralized registries were used to estimate diagnosis and treatment rates. Data for the number of liver transplants and the proportion attributable to HCV were obtained from centralized databases. Viremic prevalence estimates varied widely between countries, ranging from 0.3% in Austria, England and Germany to 8.5% in Egypt. The largest viremic populations were in Egypt, with 6358000 cases in 2008 and Brazil with 2106000 cases in 2007. The age distribution of cases differed between countries. In most countries, prevalence rates were higher among males, reflecting higher rates of injection drug use. Diagnosis, treatment and transplant levels also differed considerably between countries. Reliable estimates characterizing HCV-infected populations are critical for addressing HCV-related morbidity and mortality. There is a need to quantify the burden of chronic HCV infection at the national level

    The present and future disease burden of hepatitis C virus (HCV) infection with today's treatment paradigm

    No full text
    The disease burden of hepatitis C virus (HCV) is expected to increase as the infected population ages. A modelling approach was used to estimate the total number of viremic infections, diagnosed, treated and new infections in 2013. In addition, the model was used to estimate the change in the total number of HCV infections, the disease progression and mortality in 2013-2030. Finally, expert panel consensus was used to capture current treatment practices in each country. Using today's treatment paradigm, the total number of HCV infections is projected to decline or remain flat in all countries studied. However, in the same time period, the number of individuals with late-stage liver disease is projected to increase. This study concluded that the current treatment rate and efficacy are not sufficient to manage the disease burden of HCV. Thus, alternative strategies are required to keep the number of HCV individuals with advanced liver disease and liver-related deaths from increasing

    Strategies to manage hepatitis C virus (HCV) disease burden

    No full text
    The number of hepatitis C virus (HCV) infections is projected to decline while those with advanced liver disease will increase. A modeling approach was used to forecast two treatment scenarios: (i) the impact of increased treatment efficacy while keeping the number of treated patients constant and (ii) increasing efficacy and treatment rate. This analysis suggests that successful diagnosis and treatment of a small proportion of patients can contribute significantly to the reduction of disease burden in the countries studied. The largest reduction in HCV-related morbidity and mortality occurs when increased treatment is combined with higher efficacy therapies, generally in combination with increased diagnosis. With a treatment rate of approximately 10%, this analysis suggests it is possible to achieve elimination of HCV (defined as a >90% decline in total infections by 2030). However, for most countries presented, this will require a 3-5 fold increase in diagnosis and/or treatment. Thus, building the public health and clinical provider capacity for improved diagnosis and treatment will be critical2116089Gilead Sciences; National Institute for Health Research (NIH

    The present and future disease burden of hepatitis C virus (HCV) infection with today's treatment paradigm

    No full text
    The disease burden of hepatitis C virus (HCV) is expected to increase as the infected population ages. A modelling approach was used to estimate the total number of viremic infections, diagnosed, treated and new infections in 2013. In addition, the model was used to estimate the change in the total number of HCV infections, the disease progression and mortality in 2013-2030. Finally, expert panel consensus was used to capture current treatment practices in each country. Using today's treatment paradigm, the total number of HCV infections is projected to decline or remain flat in all countries studied. However, in the same time period, the number of individuals with late-stage liver disease is projected to increase. This study concluded that the current treatment rate and efficacy are not sufficient to manage the disease burden of HCV. Thus, alternative strategies are required to keep the number of HCV individuals with advanced liver disease and liver-related deaths from increasing211SI3459Gilead Science

    A high-throughput cellulase screening system based on droplet microfluidics

    Get PDF
    A new ultra-high-throughput screening assay for the detection of cellulase activity was developed based on microfluidic sorting. Cellulase activity is detected using a series of coupled enzymes leading to the formation of a fluorescent product that can be detected on a chip. Using this method, we have achieved up to 300-fold enrichments of the active population of cells and greater than 90% purity after just one sorting round. In addition, we proved that we can sort the cellulase-expressing cells from mixtures containing less than 1% active cells
    corecore