1,159 research outputs found

    Remarks of Marianne Gauss

    Get PDF
    Remarks by Marianne Gauss, ’75, MBA ’87, assistant professor of management and leadership, as part of a symposium on Lasallian higher education in Philadelphia

    Interview of Marianne S. Gauss, M.B.A.

    Get PDF
    From the university website (11/19/13): Professor Gauss has been a member of La Salle University’s faculty for over 20 years. Her primary responsibility has been teaching Strategic Management, International Management, Presentation Skills for Business, and Introductory and Intermediate Statistics. Additionally, she teaches in the MBA program and in an executive MBA program in Basel, Switzerland. She has won the Lindback Award for distinguished teaching and the University’s Faculty Distinguished Service Award. Professor Gauss’ prior commercial banking experience, as both an internal auditor and financial analyst, has been redirected in a voluntary role to a local credit union. She was a loan officer and the Vice President of this 2.5 million dollar financial institution, until its acquisition by American Heritage in January, 2007. In addition, she continues consulting with non-profit agencies and for-profit companies. Among them are Elliott Lewis, Tastykake, and Crown Cork and Seal. She has served La Salle in a variety of capacities including chairing the University Curriculum Committee, and participating as a member of the following committees: University Council, Faculty Senate, Community Service Grant Selection Committee, and the Kemper Scholar Selection Committee. She has been involved with the La Salle University Alumni Board of Directors since graduation, and at one time held the post of President

    Comparing Tycho-2 Astrometry with UCAC1

    Get PDF
    The Tycho-2 Catalogue, released in February 2000, is based on the ESA Hipparcos space mission data and various ground-based catalogs for proper motions. An external comparison of the Tycho-2 astrometry is presented here using the first U.S. Naval Observatory CCD Astrograph Catalog (UCAC1). The UCAC1 data were obtained from observations performed at CTIO between February 1998 and November 1999, using the 206 mm aperture 5-element lens astrograph and a 4k x 4k CCD. Only small systematic differences in position between Tycho-2 and UCAC1 up to 15 milliarcseconds (mas) are found, mainly as a function of magnitude. The standard deviations of the distributions of the position differences are in the 35 to 140 mas range, depending on magnitude. The observed scatter in the position differences is about 30% larger than expected from the combined formal, internal errors, also depending on magnitude. The Tycho-2 Catalogue has the more precise positions for bright stars (V <= 10 mag) while the UCAC1 positions are significantly better at the faint end (11 mag <= V <= 12.5 mag) of the magnitude range in common. UCAC1 goes much fainter (to R=16) than Tycho-2; however complete sky coverage is not expected before mid 2003.Comment: LaTeX, 8 pages, 3 PS figures, accepted by AJ (Aug 2000) see also http://ad.usno.navy.mil/ad/ucac/ request for UCAC1 CD-ROM: e-mail to [email protected] request for Tycho-2 CD-ROM: e-mail to [email protected] or [email protected]

    The Beta Generalized Exponential Distribution

    Full text link
    We introduce the beta generalized exponential distribution that includes the beta exponential and generalized exponential distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. We derive the moment generating function and the rrth moment thus generalizing some results in the literature. Expressions for the density, moment generating function and rrth moment of the order statistics also are obtained. We discuss estimation of the parameters by maximum likelihood and provide the information matrix. We observe in one application to real data set that this model is quite flexible and can be used quite effectively in analyzing positive data in place of the beta exponential and generalized exponential distributions

    Thermodynamic curvature measures interactions

    Full text link
    Thermodynamic fluctuation theory originated with Einstein who inverted the relation S=kBlnΩS=k_B\ln\Omega to express the number of states in terms of entropy: Ω=exp(S/kB)\Omega= \exp(S/k_B). The theory's Gaussian approximation is discussed in most statistical mechanics texts. I review work showing how to go beyond the Gaussian approximation by adding covariance, conservation, and consistency. This generalization leads to a fundamentally new object: the thermodynamic Riemannian curvature scalar RR, a thermodynamic invariant. I argue that R|R| is related to the correlation length and suggest that the sign of RR corresponds to whether the interparticle interactions are effectively attractive or repulsive.Comment: 29 pages, 7 figures (added reference 27

    Active Mass Under Pressure

    Full text link
    After a historical introduction to Poisson's equation for Newtonian gravity, its analog for static gravitational fields in Einstein's theory is reviewed. It appears that the pressure contribution to the active mass density in Einstein's theory might also be noticeable at the Newtonian level. A form of its surprising appearance, first noticed by Richard Chase Tolman, was discussed half a century ago in the Hamburg Relativity Seminar and is resolved here.Comment: 28 pages, 4 figure

    Gauss Linking Number and Electro-magnetic Uncertainty Principle

    Full text link
    It is shown that there is a precise sense in which the Heisenberg uncertainty between fluxes of electric and magnetic fields through finite surfaces is given by (one-half \hbar times) the Gauss linking number of the loops that bound these surfaces. To regularize the relevant operators, one is naturally led to assign a framing to each loop. The uncertainty between the fluxes of electric and magnetic fields through a single surface is then given by the self-linking number of the framed loop which bounds the surface.Comment: 13 pages, Revtex file, 3 eps figure

    Zinc (II) and the single-stranded DNA binding protein of bacteriophage T4.

    Full text link

    Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030

    Get PDF
    The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion
    corecore