1,355 research outputs found
Comparing Tycho-2 Astrometry with UCAC1
The Tycho-2 Catalogue, released in February 2000, is based on the ESA
Hipparcos space mission data and various ground-based catalogs for proper
motions. An external comparison of the Tycho-2 astrometry is presented here
using the first U.S. Naval Observatory CCD Astrograph Catalog (UCAC1). The
UCAC1 data were obtained from observations performed at CTIO between February
1998 and November 1999, using the 206 mm aperture 5-element lens astrograph and
a 4k x 4k CCD. Only small systematic differences in position between Tycho-2
and UCAC1 up to 15 milliarcseconds (mas) are found, mainly as a function of
magnitude. The standard deviations of the distributions of the position
differences are in the 35 to 140 mas range, depending on magnitude. The
observed scatter in the position differences is about 30% larger than expected
from the combined formal, internal errors, also depending on magnitude. The
Tycho-2 Catalogue has the more precise positions for bright stars (V <= 10 mag)
while the UCAC1 positions are significantly better at the faint end (11 mag <=
V <= 12.5 mag) of the magnitude range in common. UCAC1 goes much fainter (to
R=16) than Tycho-2; however complete sky coverage is not expected before mid
2003.Comment: LaTeX, 8 pages, 3 PS figures, accepted by AJ (Aug 2000) see also
http://ad.usno.navy.mil/ad/ucac/ request for UCAC1 CD-ROM: e-mail to
[email protected] request for Tycho-2 CD-ROM: e-mail to
[email protected] or [email protected]
Thermodynamic curvature measures interactions
Thermodynamic fluctuation theory originated with Einstein who inverted the
relation to express the number of states in terms of entropy:
. The theory's Gaussian approximation is discussed in most
statistical mechanics texts. I review work showing how to go beyond the
Gaussian approximation by adding covariance, conservation, and consistency.
This generalization leads to a fundamentally new object: the thermodynamic
Riemannian curvature scalar , a thermodynamic invariant. I argue that
is related to the correlation length and suggest that the sign of
corresponds to whether the interparticle interactions are effectively
attractive or repulsive.Comment: 29 pages, 7 figures (added reference 27
Active Mass Under Pressure
After a historical introduction to Poisson's equation for Newtonian gravity,
its analog for static gravitational fields in Einstein's theory is reviewed. It
appears that the pressure contribution to the active mass density in Einstein's
theory might also be noticeable at the Newtonian level. A form of its
surprising appearance, first noticed by Richard Chase Tolman, was discussed
half a century ago in the Hamburg Relativity Seminar and is resolved here.Comment: 28 pages, 4 figure
The Beta Generalized Exponential Distribution
We introduce the beta generalized exponential distribution that includes the
beta exponential and generalized exponential distributions as special cases. We
provide a comprehensive mathematical treatment of this distribution. We derive
the moment generating function and the th moment thus generalizing some
results in the literature. Expressions for the density, moment generating
function and th moment of the order statistics also are obtained. We discuss
estimation of the parameters by maximum likelihood and provide the information
matrix. We observe in one application to real data set that this model is quite
flexible and can be used quite effectively in analyzing positive data in place
of the beta exponential and generalized exponential distributions
Random perfect lattices and the sphere packing problem
Motivated by the search for best lattice sphere packings in Euclidean spaces
of large dimensions we study randomly generated perfect lattices in moderately
large dimensions (up to d=19 included). Perfect lattices are relevant in the
solution of the problem of lattice sphere packing, because the best lattice
packing is a perfect lattice and because they can be generated easily by an
algorithm. Their number however grows super-exponentially with the dimension so
to get an idea of their properties we propose to study a randomized version of
the algorithm and to define a random ensemble with an effective temperature in
a way reminiscent of a Monte-Carlo simulation. We therefore study the
distribution of packing fractions and kissing numbers of these ensembles and
show how as the temperature is decreased the best know packers are easily
recovered. We find that, even at infinite temperature, the typical perfect
lattices are considerably denser than known families (like A_d and D_d) and we
propose two hypotheses between which we cannot distinguish in this paper: one
in which they improve Minkowsky's bound phi\sim 2^{-(0.84+-0.06) d}, and a
competitor, in which their packing fraction decreases super-exponentially,
namely phi\sim d^{-a d} but with a very small coefficient a=0.06+-0.04. We also
find properties of the random walk which are suggestive of a glassy system
already for moderately small dimensions. We also analyze local structure of
network of perfect lattices conjecturing that this is a scale-free network in
all dimensions with constant scaling exponent 2.6+-0.1.Comment: 19 pages, 22 figure
WFPC2 Observations of the Hubble Deep Field-South
The Hubble Deep Field-South observations targeted a high-galactic-latitude
field near QSO J2233-606. We present WFPC2 observations of the field in four
wide bandpasses centered at roughly 300, 450, 606, and 814 nm. Observations,
data reduction procedures, and noise properties of the final images are
discussed in detail. A catalog of sources is presented, and the number counts
and color distributions of the galaxies are compared to a new catalog of the
HDF-N that has been constructed in an identical manner. The two fields are
qualitatively similar, with the galaxy number counts for the two fields
agreeing to within 20%. The HDF-S has more candidate Lyman-break galaxies at z
> 2 than the HDF-N. The star-formation rate per unit volume computed from the
HDF-S, based on the UV luminosity of high-redshift candidates, is a factor of
1.9 higher than from the HDF-N at z ~ 2.7, and a factor of 1.3 higher at z ~ 4.Comment: 93 pages, 25 figures; contains very long table
Gauss Linking Number and Electro-magnetic Uncertainty Principle
It is shown that there is a precise sense in which the Heisenberg uncertainty
between fluxes of electric and magnetic fields through finite surfaces is given
by (one-half times) the Gauss linking number of the loops that bound
these surfaces. To regularize the relevant operators, one is naturally led to
assign a framing to each loop. The uncertainty between the fluxes of electric
and magnetic fields through a single surface is then given by the self-linking
number of the framed loop which bounds the surface.Comment: 13 pages, Revtex file, 3 eps figure
Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030
The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion
Basic Understanding of Condensed Phases of Matter via Packing Models
Packing problems have been a source of fascination for millenia and their
study has produced a rich literature that spans numerous disciplines.
Investigations of hard-particle packing models have provided basic insights
into the structure and bulk properties of condensed phases of matter, including
low-temperature states (e.g., molecular and colloidal liquids, crystals and
glasses), multiphase heterogeneous media, granular media, and biological
systems. The densest packings are of great interest in pure mathematics,
including discrete geometry and number theory. This perspective reviews
pertinent theoretical and computational literature concerning the equilibrium,
metastable and nonequilibrium packings of hard-particle packings in various
Euclidean space dimensions. In the case of jammed packings, emphasis will be
placed on the "geometric-structure" approach, which provides a powerful and
unified means to quantitatively characterize individual packings via jamming
categories and "order" maps. It incorporates extremal jammed states, including
the densest packings, maximally random jammed states, and lowest-density jammed
structures. Packings of identical spheres, spheres with a size distribution,
and nonspherical particles are also surveyed. We close this review by
identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal
of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298
Least-squares inversion for density-matrix reconstruction
We propose a method for reconstruction of the density matrix from measurable
time-dependent (probability) distributions of physical quantities. The
applicability of the method based on least-squares inversion is - compared with
other methods - very universal. It can be used to reconstruct quantum states of
various systems, such as harmonic and and anharmonic oscillators including
molecular vibrations in vibronic transitions and damped motion. It also enables
one to take into account various specific features of experiments, such as
limited sets of data and data smearing owing to limited resolution. To
illustrate the method, we consider a Morse oscillator and give a comparison
with other state-reconstruction methods suggested recently.Comment: 16 pages, REVTeX, 6 PS figures include
- …
