183 research outputs found

    CYCLIC FATIGUE OF BRITTLE MATERIALS. Progress Report.

    Get PDF

    IL-9 Induces CCL11 Expression via STAT3 Signalling in Human Airway Smooth Muscle Cells

    Get PDF
    Background: Previous findings support the concept that IL-9 may play a significant role in mediating both pro-inflammatory and changes in airway responsiveness that characterizes the atopic asthmatic state. We previously demonstrated that human airway smooth muscle (ASM) cells express a functional IL-9R that mediate CCL11 expression. However, the signaling pathway governing this effect is not well understood. Methodology/Principal Findings: In this study, we showed that IL-9 mediated CCL11 expression in ASM cells does not rely on STAT6 or STAT5 but on STAT3 pathway. IL-9 induced rapid STAT3 activation in primary ASM cells that was not observed in case of STAT6 or STAT5. STAT3 binding to CCL11 promoter was also observed in vivo upon IL-9 stimulation of ASM cells. Disruption of STAT3 activity with SH2 domain binding inhibitory peptide results in significant reduction of IL-9 mediated CCL11 promoter activity. DN STAT3b over-expression in ASM cells, but not Ser 727 STAT3 or STAT6 DN, abolishes IL-9 mediated CCL11 promoter activity. Finally, STAT3 but not STAT6 silenced ASM cells showed significant reduction in IL-9 mediated CCL11 promoter activity and mRNA expression. Conclusion/Significance: Taken together, our results indicate that IL-9 mediated CCL11 via STAT3 signalling pathway ma

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    NADPH Oxidase Limits Innate Immune Responses in the Lungs in Mice

    Get PDF
    Background: Chronic granulomatous disease (CGD), an inherited disorder of the NADPH oxidase in which phagocytes are defective in generating superoxide anion and downstream reactive oxidant intermediates (ROIs), is characterized by recurrent bacterial and fungal infections and by excessive inflammation (e.g., inflammatory bowel disease). The mechanisms by which NADPH oxidase regulates inflammation are not well understood. Methodology/Principal Findings: We found that NADPH oxidase restrains inflammation by modulating redox-sensitive innate immune pathways. When challenged with either intratracheal zymosan or LPS, NADPH oxidase-deficient p47phox-/- mice and gp91phox-deficient mice developed exaggerated and progressive lung inflammation, augmented NF-kB activation, and elevated downstream pro-inflammatory cytokines (TNF-α, IL-17, and G-CSF) compared to wildtype mice. Replacement of functional NADPH oxidase in bone marrow-derived cells restored the normal lung inflammatory response. Studies in vivo and in isolated macrophages demonstrated that in the absence of functional NADPH oxidase, zymosan failed to activate Nrf2, a key redox-sensitive anti-inflammatory regulator. The triterpenoid, CDDO-Im, activated Nrf2 independently of NADPH oxidase and reduced zymosan-induced lung inflammation in CGD mice. Consistent with these findings, zymosan-treated peripheral blood mononuclear cells from X-linked CGD patients showed impaired Nrf2 activity and increased NF-kB activation. Conclusions/Significance: These studies support a model in which NADPH oxidase-dependent, redox-mediated signaling is critical for termination of lung inflammation and suggest new potential therapeutic targets for CGD

    Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro

    Get PDF
    The ability to reproduce the developmental events of trypanosomes that occur in their mammalian host in vitro offers significant potential to assist in understanding of the underlying biology of the process. For example, the transition from bloodstream slender to bloodstream stumpy forms is a quorum-sensing response to the parasite-derived peptidase digestion products of environmental proteins. As an abundant physiological substrate in vivo, we studied the ability of a basement membrane matrix enriched gel (BME) in the culture medium to support differentiation of pleomorphic Trypanosoma brucei to stumpy forms. BME comprises extracellular matrix proteins, which are among the most abundant proteins found in connective tissues in mammals and known substrates of parasite-released peptidases. We previously showed that two of these released peptidases are involved in generating a signal that promotes slender-to-stumpy differentiation. Here, we tested the ability of basement membrane extract to enhance parasite differentiation through its provision of suitable substrates to generate the quorum sensing signal, namely oligopeptides. Our results show that when grown in the presence of BME, T. brucei pleomorphic cells arrest at the G0/1 phase of the cell cycle and express the differentiation marker PAD1, the response being restricted to differentiation-competent parasites. Further, the stumpy forms generated in BME medium are able to efficiently proceed onto the next life cycle stage in vitro, procyclic forms, when incubated with cis-aconitate, further validating the in vitro BME differentiation system. Hence, BME provides a suitable in vitro substrate able to accurately recapitulate physiological parasite differentiation without the use of experimental animals

    Safety, pharmacodynamics, and antiviral activity of selgantolimod in viremic patients with chronic hepatitis B virus infection

    Get PDF
    Background &amp; Aims: Novel finite therapies for chronic hepatitis B (CHB) are needed, since lifelong treatment is usually required with current available oral antivirals. This phase II study (NCT03615066) evaluated the safety, pharmacodynamics, and antiviral activity of selgantolimod (a Toll-like receptor 8 agonist [TLR8]) with tenofovir alafenamide (TAF). Methods: Viremic patients with CHB not receiving treatment were stratified by HBeAg status and randomized 2:2:1 to TAF 25 mg/day with selgantolimod 3 mg orally once weekly (QW), selgantolimod 1.5 mg QW, or placebo. Combination therapy continued until week (W)24, followed by TAF monotherapy until W48; patients then discontinued TAF and were followed until W96 (treatment-free follow-up [TFFU] period). The primary efficacy endpoint was the proportion with ≥1 log10 IU/ml HBsAg decline at W24. Results: Sixty-seven patients received study drug; 27 were followed during TFFU. Nausea, headache, vomiting, fatigue, and dizziness were the most common adverse events. Most adverse events were grade 1. Alanine aminotransferase flares were not observed up to W48. Four patients experienced alanine aminotransferase and hepatitis flares during TFFU; all had HBV DNA increases. Selgantolimod increased serum cytokines and chemokines and redistributed several circulating immune cell subsets. No patients achieved the primary efficacy endpoint. Mean HBsAg changes were −0.12, −0.16, and −0.12 log10 IU/ml in the selgantolimod 3 mg, selgantolimod 1.5 mg, and placebo groups, respectively, at W48; HBV DNA declined in all groups by ≥2 log10 IU/ml as early as W2, with all groups rebounding to baseline during TFFU. No HBsAg or HBeAg loss or seroconversion was observed throughout TFFU. Conclusions: Selgantolimod up to 3 mg was safe and well tolerated. Pharmacodynamics and antiviral activity in viremic patients support continued study of selgantolimod in combination CHB therapies. Impact and implications: Novel therapeutics for chronic HBV infection are needed to achieve a functional cure. In this study, we confirmed the safety and tolerability of selgantolimod (formerly GS-9688, a TLR8) when administered with tenofovir alafenamide over 24 weeks in viremic patients with chronic HBV infection. Overall, declines in HBsAg levels with selgantolimod treatment were modest; subgroup analysis indicated that patients with alanine aminotransferase levels greater than the upper limit of normal had significantly greater declines compared to those with normal alanine aminotransferase levels (–0.20 vs. –0.03 log10 IU/ml; p &lt;0.001). These findings suggest a potential differential response to selgantolimod based on patients’ baseline HBV-specific immune response, which should be considered in future investigations characterizing the underlying mechanisms of selgantolimod treatment and in HBV cure studies using similar immunomodulatory pathways. Clinical trial number: NCT03615066 be found at https://www.gileadclinicaltrials.com/transparency-policy/.</p

    Safety, pharmacodynamics, and antiviral activity of selgantolimod in viremic patients with chronic hepatitis B virus infection

    Get PDF
    Background &amp; Aims: Novel finite therapies for chronic hepatitis B (CHB) are needed, since lifelong treatment is usually required with current available oral antivirals. This phase II study (NCT03615066) evaluated the safety, pharmacodynamics, and antiviral activity of selgantolimod (a Toll-like receptor 8 agonist [TLR8]) with tenofovir alafenamide (TAF). Methods: Viremic patients with CHB not receiving treatment were stratified by HBeAg status and randomized 2:2:1 to TAF 25 mg/day with selgantolimod 3 mg orally once weekly (QW), selgantolimod 1.5 mg QW, or placebo. Combination therapy continued until week (W)24, followed by TAF monotherapy until W48; patients then discontinued TAF and were followed until W96 (treatment-free follow-up [TFFU] period). The primary efficacy endpoint was the proportion with ≥1 log10 IU/ml HBsAg decline at W24. Results: Sixty-seven patients received study drug; 27 were followed during TFFU. Nausea, headache, vomiting, fatigue, and dizziness were the most common adverse events. Most adverse events were grade 1. Alanine aminotransferase flares were not observed up to W48. Four patients experienced alanine aminotransferase and hepatitis flares during TFFU; all had HBV DNA increases. Selgantolimod increased serum cytokines and chemokines and redistributed several circulating immune cell subsets. No patients achieved the primary efficacy endpoint. Mean HBsAg changes were −0.12, −0.16, and −0.12 log10 IU/ml in the selgantolimod 3 mg, selgantolimod 1.5 mg, and placebo groups, respectively, at W48; HBV DNA declined in all groups by ≥2 log10 IU/ml as early as W2, with all groups rebounding to baseline during TFFU. No HBsAg or HBeAg loss or seroconversion was observed throughout TFFU. Conclusions: Selgantolimod up to 3 mg was safe and well tolerated. Pharmacodynamics and antiviral activity in viremic patients support continued study of selgantolimod in combination CHB therapies. Impact and implications: Novel therapeutics for chronic HBV infection are needed to achieve a functional cure. In this study, we confirmed the safety and tolerability of selgantolimod (formerly GS-9688, a TLR8) when administered with tenofovir alafenamide over 24 weeks in viremic patients with chronic HBV infection. Overall, declines in HBsAg levels with selgantolimod treatment were modest; subgroup analysis indicated that patients with alanine aminotransferase levels greater than the upper limit of normal had significantly greater declines compared to those with normal alanine aminotransferase levels (–0.20 vs. –0.03 log10 IU/ml; p &lt;0.001). These findings suggest a potential differential response to selgantolimod based on patients’ baseline HBV-specific immune response, which should be considered in future investigations characterizing the underlying mechanisms of selgantolimod treatment and in HBV cure studies using similar immunomodulatory pathways. Clinical trial number: NCT03615066 be found at https://www.gileadclinicaltrials.com/transparency-policy/.</p

    A Real-Time PCR Antibiogram for Drug-Resistant Sepsis

    Get PDF
    Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL). Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔCt<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01). Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 Gram-negative and 2 Gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24 hours
    corecore