402 research outputs found

    Adiabatic two-qubit gates in capacitively coupled quantum dot hybrid qubits

    Full text link
    The ability to tune qubits to flat points in their energy dispersions ("sweet spots") is an important tool for mitigating the effects of charge noise and dephasing in solid-state devices. However, the number of derivatives that must be simultaneously set to zero grows exponentially with the number of coupled qubits, making the task untenable for as few as two qubits. This is a particular problem for adiabatic gates, due to their slower speeds. Here, we propose an adiabatic two-qubit gate for quantum dot hybrid qubits, based on the tunable, electrostatic coupling between distinct charge configurations. We confirm the absence of a conventional sweet spot, but show that controlled-Z (CZ) gates can nonetheless be optimized to have fidelities of ∼\sim99% for a typical level of quasistatic charge noise (σε\sigma_\varepsilon≃\simeq1 μ\mueV). We then develop the concept of a dynamical sweet spot (DSS), for which the time-averaged energy derivatives are set to zero, and identify a simple pulse sequence that achieves an approximate DSS for a CZ gate, with a 5×\times improvement in the fidelity. We observe that the results depend on the number of tunable parameters in the pulse sequence, and speculate that a more elaborate sequence could potentially attain a true DSS.Comment: 14 pages, 9 figure

    Blood Glucose Levels and High Intensity Exercise with Respect to Meal Timing

    Get PDF
    The research conducted was about monitoring blood glucose levels with exercise with respect to meal timing. It has been hypothesized that with short bouts of high intensity exercise, one can raise their blood glucose levels because in acute response to high intensity exercise. Previous research has shown that with long bouts of exercise while fasting you can lower blood glucose levels. This study is testing the meal timing from fasting to right before the exercise and also eating one and two hours before combined with a 50 minute moderate to high intensity workout, keeping the heart rate in zones 3- 5, which is around 70%-100% Of their VO2 Max, which was tested by using An H7 sensor. The research population ranged from male to female, and ages from 19-39 year old college students. The test is administered before the workout and after the workout. There is hope that with enough data we can support that an individual can increase glycogen levels when eating at the perfect time for increased muscle capacity, but also how you can lower blood glucose levels with different types of exercise when fasting. This info will be very beneficial to people who suffer from diabetes, or even athletes who was to optimize performance

    The ecology of a new invasion by Bellamya japonica in the Savannah basin

    Get PDF
    The first known infestation of Bellamya japonica in the Savannah River Basin was discovered in 2006. Investigations of this population led to questions regarding their distribution and behavior. We have completed experiments on behavior and concluded that there exists a significant negative phototactic but no detectable geotactic response. In addition, a study of their dispersal using mark-recapture methods concluded that, while this technique was useful to follow the life history of individual snails, they did not meet the method assumptions and therefore this method could not produce a reliable population estimate. Studies of fecundity have shown a seasonal trend with an unsurprising correlation to water temperatures and time-of-year. Fecundity rates are still being assessed. Age is difficult to determine and the life history studies using marked snails will assist with this as well. Metabolism is unknown for this species but methods are currently being developed. Anecdotal observations suggested a possible circadian rhythm with regard to fecundity. A systematic study of this phenomenon is also in progress. If successful our studies may help with management of this infestation in the future

    The ClpXP protease is dispensable for degradation of unfolded proteins in <i>Staphylococcus aureus</i>

    Get PDF
    Abstract In living cells intracellular proteolysis is crucial for protein homeostasis, and ClpP proteases are conserved between eubacteria and the organelles of eukaryotic cells. In Staphylococcus aureus, ClpP associates to the substrate specificity factors, ClpX and ClpC forming two ClpP proteases, ClpXP and ClpCP. To address how individual ClpP proteases impact cell physiology, we constructed a S. aureus mutant expressing ClpX with an I265E substitution in the ClpP recognition tripeptide of ClpX. This mutant cannot degrade established ClpXP substrates confirming that the introduced amino acid substitution abolishes ClpXP activity. Phenotypic characterization of this mutant showed that ClpXP activity controls cell size and is required for growth at low temperature. Cells expressing the ClpXI265E variant, in contrast to cells lacking ClpP, are not sensitive to heat-stress and do not accumulate protein aggregates showing that ClpXP is dispensable for degradation of unfolded proteins in S. aureus. Consistent with this finding, transcriptomic profiling revealed strong induction of genes responding to protein folding stress in cells devoid of ClpP, but not in cells lacking only ClpXP. In the latter cells, highly upregulated loci include the urease operon, the pyrimidine biosynthesis operon, the betA-betB operon, and the pathogenicity island, SaPI5, while virulence genes were dramatically down-regulated

    The Chaperone ClpX Stimulates Expression of Staphylococcus aureus Protein A by Rot Dependent and Independent Pathways

    Get PDF
    The Clp ATPases (Hsp100) constitute a family of closely related proteins that have protein reactivating and remodelling activities typical of molecular chaperones. In Staphylococcus aureus the ClpX chaperone is essential for virulence and for transcription of spa encoding Protein A. The present study was undertaken to elucidate the mechanism by which ClpX stimulates expression of Protein A. For this purpose, we prepared antibodies directed against Rot, an activator of spa transcription, and demonstrated that cells devoid of ClpX contain three-fold less Rot than wild-type cells. By varying Rot expression from an inducible promoter we showed that expression of Protein A requires a threshold level of Rot. In the absence of ClpX the Rot content is reduced below this threshold level, hence, explaining the substantially reduced Protein A expression in the clpX mutant. Experiments addressed at pinpointing the role of ClpX in Rot synthesis revealed that ClpX is required for translation of Rot. Interestingly, translation of the spa mRNA was, like the rot mRNA, enhanced by ClpX. These data demonstrate that ClpX performs dual roles in regulating Protein A expression, as ClpX stimulates transcription of spa by enhancing translation of Rot, and that ClpX additionally is required for full translation of the spa mRNA. The current findings emphasize that ClpX has a central role in fine-tuning virulence regulation in S. aureus

    Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation
    • …
    corecore