11,265 research outputs found

    Poverty Measures and Anti-Poverty Policy

    Get PDF
    [Excerpt] Amartya Sen has made fundamental contributions to the study of distributional aspects of economic growth and decline. Among his pathbreaking works are his lectures on the economics of inequality (Sen, 1973), his article on the axiomatics of poverty measurement (Sen, 1976), and his book on anti-poverty policy in the context of famines (Sen, 1981). This paper is concerned with one of these areas, namely, the measurement of poverty and the implications for anti-poverty policy. In the 1960\u27s and 1970\u27s those who were working in the poverty field held a number of somewhat incompletely articulated views as to the extent of poverty in an economy. One was the judgment that a country is poorer the larger is the number or fraction of its people below an agreed-upon poverty standard. Second, the severity of poverty depends on how poor the poor are. As formulated then, the larger is the average income shortfall among the poor, the more severe is poverty. Thirdly, it was recognized that some of the poor are poorer than others, and the extent of poverty should also depend on the distribution of income among the poor

    Transient photon production in a QGP

    Full text link
    We discuss the shortcomings of a formula that has been used in the literature to compute the number of photons emitted by a hot or dense system during a finite time, and show that the transient effects it predicts for the photon rate are unphysical.Comment: 4 pages, to appear in the proceedings of Hadron Physics - RANP 2004, Angra dos Reis, Brazi

    Single-inclusive production of large-pT charged particles in hadronic collisions at TeV energies and perturbative QCD predictions

    Get PDF
    The single inclusive spectrum of charged particles with transverse momenta pT=3-150 GeV/c measured at midrapidity by the CDF experiment in proton-antiproton (p-pbar) collisions at sqrt(s)=1.96 TeV is compared to next-to-leading order (NLO) perturbative QCD calculations using the most recent parametrizations of the parton distributions and parton-to-hadron fragmentation functions. Above pT~20 GeV/c, there is a very sizeable disagreement of the Tevatron data compared to the NLO predictions and to xT-scaling expectations, suggesting a problem in the experimental data. We also present the predictions for the pT-differential charged hadron spectra and the associated theoretical uncertainties for proton-proton (p-p) collisions at LHC energies (sqrt(s)=0.9-14 TeV). Two procedures to estimate the charged hadron spectra at LHC heavy-ion collision energies (sqrt(s)=2.76,5.5 TeV) from p-p measurements are suggested.Comment: 23 pages, 9 figures. A few text additions. Accepted for publication in JHE

    870 micron Imaging of a Transitional Disk in Upper Scorpius: Holdover from the Era of Giant Planet Formation?

    Full text link
    We present 880 micron images of the transition disk around the star [PZ99] J160421.7-213028, a solar-mass star in the nearby Upper Scorpius association. With a resolution down to 0.34 arcsec, we resolve the inner hole in this disk, and via model fitting to the visibilities and spectral energy distribution we determine both the structure of the outer region and the presence of sparse dust within the cavity. The disk contains about 0.1 Jupiter masses of mm-emitting grains, with an inner disk edge of about 70 AU. The inner cavity contains a small amount of dust with a depleted surface density in a region extending from about 20-70 AU. Taking into account prior observations indicating little to no stellar accretion, the lack of a binary companion, and the presence of dust near 0.1 AU, we determine that the most likely mechanism for the formation of this inner hole is the presence of one or more giant planets.Comment: 12 pages, 7 figures. To appear in the Astrophysical Journa

    Three-dimensional fluid motion in Faraday waves: creation of vorticity and generation of two-dimensional turbulence

    Full text link
    We study the generation of 2D turbulence in Faraday waves by investigating the creation of spatially periodic vortices in this system. Measurements which couple a diffusing light imaging technique and particle tracking algorithms allow the simultaneous observation of the three-dimensional fluid motion and of the temporal changes in the wave field topography. Quasi-standing waves are found to coexist with a spatially extended fluid transport. More specifically, the destruction of regular patterns of oscillons coincides with the emergence of a complex fluid motion whose statistics are similar to that of two-dimensional turbulence. We reveal that a lattice of oscillons generates vorticity at the oscillon scale in the horizontal flow. The interaction of these vortices explain how 2D turbulence is fueled by almost standing waves. Remarkably, the curvature of Lagrangian trajectories reveals a "footprint" of the forcing scale vortices in fully developed turbulence. 2D Navier-Stokes turbulence should be considered a source of disorder in Faraday waves. These findings also provide a new paradigm for vorticity creation in 2D flows

    Cosmic Neutron Star Merger Rate and Gravitational Waves constrained by the R Process Nucleosynthesis

    Full text link
    The cosmic evolution of the neutron star merger (NSM) rate can be deduced from the observed cosmic star formation rate. This allows to estimate the rate expected in the horizon of the gravitational wave detectors advanced Virgo and ad LIGO and to compare those rates with independent predictions. In this context, the rapid neutron capture process, or r process, can be used as a constraint assuming NSM is the main astrophysical site for this nucleosynthetic process. We compute the early cosmic evolution of a typical r process element, Europium. Eu yields from NSM are taken from recent nucleosynthesis calculations. The same approach allows to compute the cosmic rate of Core Collapse SuperNovae (CCSN) and the associated evolution of Eu. We find that the bulk of Eu observations at high iron abundance can be rather well fitted by either CCSN or NSM scenarios. However, at lower metallicity, the early Eu cosmic evolution favors NSM as the main astrophysical site for the r process. A comparison between our calculations and spectroscopic observations at very low metallicities allows to constrain the coalescence timescale in the NSM scenario to about 0.1 to 0.2 Gyr. These values are in agreement with the coalescence timescales of some observed binary pulsars. Finally, the cosmic evolution of Eu is used to put constraints on the NSM rate, the merger rate in the horizon of the gravitational wave detectors advanced Virgo/ad LIGO, as well as the expected rate of electromagnetic counterparts to mergers (kilonovae) in large near-infrared surveys.Comment: accepted in MNRAS, 19 page

    The existence of a critical length scale in regularised friction

    Full text link
    We study a regularisation of Coulomb's friction law on the propagation of local slip at an interface between a deformable and a rigid solid. This regularisation, which was proposed based on experimental observations, smooths the effect of a sudden jump in the contact pressure over a characteristic length scale. We apply it in numerical simulations in order to analyse its influence on the behaviour of local slip. We first show that mesh convergence in dynamic simulations is achieved without any numerical damping in the bulk and draw a convergence map with respect to the characteristic length of the friction regularisation. By varying this length scale on the example of a given slip event, we observe that there is a critical length below which the friction regularisation does not affect anymore the propagation of the interface rupture. A spectral analysis of the regularisation on a periodic variation of Coulomb's friction is conducted to confirm the existence of this critical length. The results indicate that if the characteristic length of the friction regularisation is smaller than the critical length, a slip event behaves as if it was governed by Coulomb's law. We therefore propose that there is a domain of influence of the friction regularisation depending on its characteristic length and on the frequency content of the local slip event. A byproduct of the analysis is related to the existence of a physical length scale characterising a given frictional interface. We establish that the experimental determination of this interface property may be achieved by experimentally monitoring slip pulses whose frequency content is rich enough.Comment: 21 pages, 7 figure

    Synthetic considerations in the self-assembly of coordination polymers of pyridine-functionalised hybrid Mn-Anderson polyoxometalates

    Get PDF
    The incorporation of polyoxometalates (POMs) as structural units into ordered porous constructs such as metal-organic frameworks (MOFs) is desirable for a range of applications where intrinsic properties inherited from both the MOF and POM are utilised, including catalysis and magnetic data storage. The controlled self-assembly of targeted MOF topologies containing POM units is hampered by the wide range of oxo and hydroxo units on the peripheries of POMs that can act as coordinating groups towards linking metal cations leading to a diverse range of structures, but incorporation of organic donor units into hybrid POMs offers an alternative methodology to programmably synthesise POM/MOF conjugates. Herein, we report six coordination polymers obtained serendipitously wherein Zn2+ and Cu2+ link pyridine-appended Mn-Anderson clusters into two- and three-dimensional network solids with complex connectivities and topologies. Careful inspection of their solid-state structures has allowed us to identify common structure-directing features across these coordination polymers, including a square motif where two Zn2+ cations bridge two POMs. By correlating certain structural motifs with synthetic conditions we have formulated a series of design considerations for the self-assembly of coordination polymers of hybrid POMs, encompassing the selection of reaction conditions, co-ligands and linking metal cations. We anticipate that these synthetic guidelines will inform the future assembly of hybrid POMs into functional MOF materials

    An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling

    Full text link
    We present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination, and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factorization leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite. The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK -- STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices
    • …
    corecore