9,769 research outputs found

    A new intermediate mass protostar in the Cepheus A HW2 region

    Get PDF
    We present the discovery of the first molecular hot core associated with an intermediate mass protostar in the CepA HW2 region. The hot condensation was detected from single dish and interferometric observations of several high excitation rotational lines (from 100 to 880K above the ground state) of SO2 in the ground vibrational state and of HC3N in the vibrationally excited states v7=1 and v7=2. The kinetic temperature derived from both molecules is 160K. The high-angular resolution observations (1.25'' x 0.99'') of the SO2 J=28(7,21)-29(6,24) line (488K above the ground state) show that the hot gas is concentrated in a compact condensation with a size of 0.6''(430AU), located 0.4'' (300AU) east from the radio-jet HW2. The total SO2 column density in the hot condensation is 10E18cm-2, with a H2 column density ranging from 10E23 to 6 x 10E24cm-2. The H2 density and the SO2 fractional abundance must be larger than 10E7cm-3 and 2 x 10E-7 respectively. The most likely alternatives for the nature of the hot and very dense condensation are discussed. From the large column densities of hot gas, the detection of the HC3N vibrationally excited lines and the large SO2 abundance, we favor the interpretation of a hot core heated by an intermediate mass protostar of 10E3 Lo. This indicates that the CepA HW2 region contains a cluster of very young stars

    Insights into the Carbon chemistry of Mon R2

    Full text link
    Aiming to learn about the chemistry of the dense PDR around the ultracompact (UC) HII region in Mon R2, we have observed a series of mm-wavelength transitions of C3H2 and C2H. In addition, we have traced the distribution of other molecules, such as H13CO+, SiO, HCO, and HC3N. These data, together with the reactive ions recently detected, have been considered to determine the physical conditions and to model the PDR chemistry. We then identified two kind of molecules. The first group, formed by the reactive ions (CO+, HOC+) and small hydrocarbons (C2H, C3H2), traces the surface layers of the PDR and is presumably exposed to a high UV field (hence we called it as "high UV", or HUV). HUV species is expected to dominate for visual absorptions 2 < Av < 5 mag. A second group (less exposed to the UV field, and hence called "low UV", or LUV) includes HCO and SiO, and is mainly present at the edges of the PDR (Av > 5 mag). While the abundances of the HUV molecules can be explained by gas phase models, this is not the case for the studied LUV ones. Although some efficient gas-phase reactions might be lacking, grain chemistry sounds like a probable mechanism able to explain the observed enhancement of HCO and SiO. Within this scenario, the interaction of UV photons with grains produces an important effect on the molecular gas chemistry and constitutes the first evidence of an ionization front created by the UC HII region carving its host molecular cloud. The physical conditions and kinematics of the gas layer which surrounds the UC HII region were derived from the HUV molecules. Molecular hydrogen densities > 4 10^6 cm^(-3) are required to reproduce the observations. Such high densities suggest that the HII region could be pressure-confined by the surrounding high density molecular gas.Comment: 32 pages, 8 figures. Accepted by Astrophysical Journa

    M5 spikes and operators in the HVZ membrane theory

    Full text link
    In this note we study some aspects of the so-called dual ABJM theory introduced by Hanany, Vegh & Zaffaroni. We analyze the spectrum of chiral operators, and compare it with the spectrum of functions on the mesonic moduli space M=C^2\times C^2/Z_k, finding expected agreement for the coherent branch. A somewhat mysterious extra branch of dimension N^2 opens up at the orbifold fixed point. We also study BPS solutions which represent M2/M5 intersections. The mesonic moduli space suggests that there should be two versions of this spike: one where the M5 lives in the orbifolded C^2 and another where it lives in the unorbifolded one. While expectedly the first class turns out to be like the ABJM spike, the latter class looks like a collection of stacks of M5 branes with fuzzy S^3 profiles. This shows hints of the appearance of the global SO(4) at the non-abelian level which is otherwise not present in the bosonic potential. We also study the matching of SUGRA modes with operators in the coherent branch of the moduli space. As a byproduct, we present some formulae for the laplacian in conical CY_4 of the form C^n\times CY_{4-n}.Comment: 22 pages, 1 figure. Published version with corrected typos

    Monitoring the Large Proper Motions of Radio Sources in the Orion BN/KL Region

    Full text link
    We present absolute astrometry of four radio sources in the Becklin-Neugebauer/Kleinman-Low (BN/KL) region, derived from archival data (taken in 1991, 1995, and 2000) as well as from new observations (taken in 2006). All data consist of 3.6 cm continuum emission and were taken with the Very Large Array in its highest angular resolution A configuration. We confirm the large proper motions of the BN object, the radio source I (GMR I) and the radio counterpart of the infrared source n (Orion-n), with values from 15 to 26 km/s. The three sources are receding from a point between them from where they seem to have been ejected about 500 years ago, probably via the disintegration of a multiple stellar system. We present simulations of very compact stellar groups that provide a plausible dynamical scenario for the observations. The radio source Orion-n appeared as a double in the first three epochs, but as single in 2006. We discuss this morphological change. The fourth source in the region, GMR D, shows no statistically significant proper motions. We also present new, accurate relative astrometry between BN and radio source I that restrict possible dynamical scenarios for the region. During the 2006 observations, the radio source GMR A, located about 1' to the NW of the BN/KL region, exhibited an increase in its flux density of a factor of ~3.5 over a timescale of one hour. This rapid variability at cm wavelengths is similar to that previously found during a flare at millimeter wavelengths that took place in 2003.Comment: Accepted for publication in Ap

    p-wave Holographic Superconductors and five-dimensional gauged Supergravity

    Full text link
    We explore five-dimensional N=4{\cal N}=4 SU(2)×U(1)SU(2)\times U(1) and N=8{\cal N}=8 SO(6) gauged supergravities as frameworks for condensed matter applications. These theories contain charged (dilatonic) black holes and 2-forms which have non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question of interest is whether they also contain black holes with two-form hair with the required asymptotic to give rise to holographic superconductivity. We first consider the N=4{\cal N}=4 case, which contains a complex two-form potential AμνA_{\mu\nu} which has U(1) charge ±1\pm 1. We find that a slight generalization, where the two-form potential has an arbitrary charge qq, leads to a five-dimensional model that exhibits second-order superconducting transitions of p-wave type where the role of order parameter is played by AμνA_{\mu\nu}, provided q5.6q \gtrsim 5.6. We identify the operator that condenses in the dual CFT, which is closely related to N=4{\cal N}=4 Super Yang-Mills theory with chemical potentials. Similar phase transitions between R-charged black holes and black holes with 2-form hair are found in a generalized version of the N=8{\cal N}=8 gauged supergravity Lagrangian where the two-forms have charge q1.8q\gtrsim 1.8.Comment: 35 pages, 14 figure

    Vibrationally excited HC3N in NGC 4418

    Get PDF
    We investigate the molecular gas properties of the deeply obscured luminous infrared galaxy NGC 4418. We address the excitation of the complex molecule HC3N to determine whether its unusually luminous emission is related to the nature of the buried nuclear source. We use IRAM 30m and JCMT observations of rotational and vibrational lines of HC3N to model the excitation of the molecule by means of rotational diagrams. We report the first confirmed extragalactic detection of vibrational lines of HC3N. We detect 6 different rotational transitions ranging from J=10-9 to J=30-29 in the ground vibrational state and obtain a tentative detection of the J=38-37 line. We also detect 7 rotational transitions of the vibrationally excited states v6 and v7, with angular momenta ranging from J=10-9 to 28-27. The energies of the upper states of the observed transitions range from 20 to 850 K. In the optically thin regime, we find that the rotational transitions of the vibrational ground state can be fitted for two temperatures, 30 K and 260 K, while the vibrationally excited levels can be fitted for a rotational temperature of 90 K and a vibrational temperature of 500 K. In the inner 300 pc of NGC 4418, we estimate a high HC3N abundance, of the order of 10^-7. The excitation of the HC3N molecule responds strongly to the intense radiation field and the presence of warm, dense gas and dust at the center of NGC 4418. The intense HC3N line emission is a result of both high abundances and excitation. The properties of the HC3N emitting gas are similar to those found for hot cores in Sgr B2, which implies that the nucleus (< 300 pc) of NGC 4418 is reminiscent of a hot core. The potential presence of a compact, hot component (T=500 K) is also discussed

    Detection of Emission from the CN Radical in the Cloverleaf Quasar at z=2.56

    Full text link
    We report the detection of CN(N=3-2) emission towards the Cloverleaf quasar (z=2.56) based on observations with the IRAM Plateau de Bure Interferometer. This is the first clear detection of emission from this radical at high redshift. CN emission is a tracer of dense molecular hydrogen gas (n(H2) > 10^4 cm^{-3}) within star-forming molecular clouds, in particular in regions where the clouds are affected by UV radiation. The HCN/CN intensity ratio can be used as a diagnostic for the relative importance of photodissociation regions (PDRs) in a source, and as a sensitive probe of optical depth, the radiation field, and photochemical processes. We derive a lensing-corrected CN(N=3-2) line luminosity of L'(CN(3-2) = (4.5 +/- 0.5) x 10^9 K km/s pc^2. The ratio between CN luminosity and far-infrared luminosity falls within the scatter of the same relationship found for low-z (ultra-) luminous infrared galaxies. Combining our new results with CO(J=3-2) and HCN(J=1-0) measurements from the literature and assuming thermal excitation for all transitions, we find a CO/CN luminosity ratio of 9.3 +/- 1.9 and a HCN/CN luminosity ratio of 0.95 +/- 0.15. However, we find that the CN(N=3-2) line is likely only subthermally excited, implying that those ratios may only provide upper limits for the intrinsic 1-0 line luminosity ratios. We conclude that, in combination with other molecular gas tracers like CO, HCN, and HCO+, CN is an important probe of the physical conditions and chemical composition of dense molecular environments at high redshift.Comment: 6 pages, 5 figures, 1 table, to appear in ApJ (accepted May 23, 2007

    Molecules as tracers of galaxy evolution: an EMIR survey. I. Presentation of the data and first results

    Get PDF
    We investigate the molecular gas properties of a sample of 23 galaxies in order to find and test chemical signatures of galaxy evolution and to compare them to IR evolutionary tracers. Observation at 3 mm wavelengths were obtained with the EMIR broadband receiver, mounted on the IRAM 30 m telescope on Pico Veleta, Spain. We compare the emission of the main molecular species with existing models of chemical evolution by means of line intensity ratios diagrams and principal component analysis. We detect molecular emission in 19 galaxies in two 8 GHz-wide bands centred at 88 and 112 GHz. The main detected transitions are the J=1-0 lines of CO, 13CO, HCN, HNC, HCO+, CN, and C2H. We also detect HC3N J=10-9 in the galaxies IRAS 17208, IC 860, NGC 4418, NGC 7771, and NGC 1068. The only HC3N detections are in objects with HCO+/HCN<1 and warm IRAS colours. Galaxies with the highest HC3N/HCN ratios have warm IRAS colours (60/100 {\mu}m>0.8). The brightest HC3N emission is found in IC 860, where we also detect the molecule in its vibrationally excited state.We find low HNC/HCN line ratios (<0.5), that cannot be explained by existing PDR or XDR chemical models. Bright HC3N emission in HCO+-faint objects may imply that these are not dominated by X-ray chemistry. Thus the HCN/HCO+ line ratio is not, by itself, a reliable tracer of XDRs. Bright HC3N and faint HCO+ could be signatures of embedded starformation, instead of AGN activity

    Waves on the surface of the Orion molecular cloud

    Full text link
    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the `pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of `waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur
    corecore