9,769 research outputs found
A new intermediate mass protostar in the Cepheus A HW2 region
We present the discovery of the first molecular hot core associated with an
intermediate mass protostar in the CepA HW2 region. The hot condensation was
detected from single dish and interferometric observations of several high
excitation rotational lines (from 100 to 880K above the ground state) of SO2 in
the ground vibrational state and of HC3N in the vibrationally excited states
v7=1 and v7=2. The kinetic temperature derived from both molecules is 160K. The
high-angular resolution observations (1.25'' x 0.99'') of the SO2
J=28(7,21)-29(6,24) line (488K above the ground state) show that the hot gas is
concentrated in a compact condensation with a size of 0.6''(430AU), located
0.4'' (300AU) east from the radio-jet HW2. The total SO2 column density in the
hot condensation is 10E18cm-2, with a H2 column density ranging from 10E23 to 6
x 10E24cm-2. The H2 density and the SO2 fractional abundance must be larger
than 10E7cm-3 and 2 x 10E-7 respectively. The most likely alternatives for the
nature of the hot and very dense condensation are discussed. From the large
column densities of hot gas, the detection of the HC3N vibrationally excited
lines and the large SO2 abundance, we favor the interpretation of a hot core
heated by an intermediate mass protostar of 10E3 Lo. This indicates that the
CepA HW2 region contains a cluster of very young stars
Insights into the Carbon chemistry of Mon R2
Aiming to learn about the chemistry of the dense PDR around the ultracompact
(UC) HII region in Mon R2, we have observed a series of mm-wavelength
transitions of C3H2 and C2H. In addition, we have traced the distribution of
other molecules, such as H13CO+, SiO, HCO, and HC3N. These data, together with
the reactive ions recently detected, have been considered to determine the
physical conditions and to model the PDR chemistry. We then identified two kind
of molecules. The first group, formed by the reactive ions (CO+, HOC+) and
small hydrocarbons (C2H, C3H2), traces the surface layers of the PDR and is
presumably exposed to a high UV field (hence we called it as "high UV", or
HUV). HUV species is expected to dominate for visual absorptions 2 < Av < 5
mag. A second group (less exposed to the UV field, and hence called "low UV",
or LUV) includes HCO and SiO, and is mainly present at the edges of the PDR (Av
> 5 mag). While the abundances of the HUV molecules can be explained by gas
phase models, this is not the case for the studied LUV ones. Although some
efficient gas-phase reactions might be lacking, grain chemistry sounds like a
probable mechanism able to explain the observed enhancement of HCO and SiO.
Within this scenario, the interaction of UV photons with grains produces an
important effect on the molecular gas chemistry and constitutes the first
evidence of an ionization front created by the UC HII region carving its host
molecular cloud. The physical conditions and kinematics of the gas layer which
surrounds the UC HII region were derived from the HUV molecules. Molecular
hydrogen densities > 4 10^6 cm^(-3) are required to reproduce the observations.
Such high densities suggest that the HII region could be pressure-confined by
the surrounding high density molecular gas.Comment: 32 pages, 8 figures. Accepted by Astrophysical Journa
M5 spikes and operators in the HVZ membrane theory
In this note we study some aspects of the so-called dual ABJM theory
introduced by Hanany, Vegh & Zaffaroni. We analyze the spectrum of chiral
operators, and compare it with the spectrum of functions on the mesonic moduli
space M=C^2\times C^2/Z_k, finding expected agreement for the coherent branch.
A somewhat mysterious extra branch of dimension N^2 opens up at the orbifold
fixed point. We also study BPS solutions which represent M2/M5 intersections.
The mesonic moduli space suggests that there should be two versions of this
spike: one where the M5 lives in the orbifolded C^2 and another where it lives
in the unorbifolded one. While expectedly the first class turns out to be like
the ABJM spike, the latter class looks like a collection of stacks of M5 branes
with fuzzy S^3 profiles. This shows hints of the appearance of the global SO(4)
at the non-abelian level which is otherwise not present in the bosonic
potential. We also study the matching of SUGRA modes with operators in the
coherent branch of the moduli space. As a byproduct, we present some formulae
for the laplacian in conical CY_4 of the form C^n\times CY_{4-n}.Comment: 22 pages, 1 figure. Published version with corrected typos
Monitoring the Large Proper Motions of Radio Sources in the Orion BN/KL Region
We present absolute astrometry of four radio sources in the
Becklin-Neugebauer/Kleinman-Low (BN/KL) region, derived from archival data
(taken in 1991, 1995, and 2000) as well as from new observations (taken in
2006). All data consist of 3.6 cm continuum emission and were taken with the
Very Large Array in its highest angular resolution A configuration. We confirm
the large proper motions of the BN object, the radio source I (GMR I) and the
radio counterpart of the infrared source n (Orion-n), with values from 15 to 26
km/s. The three sources are receding from a point between them from where they
seem to have been ejected about 500 years ago, probably via the disintegration
of a multiple stellar system. We present simulations of very compact stellar
groups that provide a plausible dynamical scenario for the observations. The
radio source Orion-n appeared as a double in the first three epochs, but as
single in 2006. We discuss this morphological change. The fourth source in the
region, GMR D, shows no statistically significant proper motions. We also
present new, accurate relative astrometry between BN and radio source I that
restrict possible dynamical scenarios for the region. During the 2006
observations, the radio source GMR A, located about 1' to the NW of the BN/KL
region, exhibited an increase in its flux density of a factor of ~3.5 over a
timescale of one hour. This rapid variability at cm wavelengths is similar to
that previously found during a flare at millimeter wavelengths that took place
in 2003.Comment: Accepted for publication in Ap
p-wave Holographic Superconductors and five-dimensional gauged Supergravity
We explore five-dimensional and
SO(6) gauged supergravities as frameworks for condensed matter applications.
These theories contain charged (dilatonic) black holes and 2-forms which have
non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question
of interest is whether they also contain black holes with two-form hair with
the required asymptotic to give rise to holographic superconductivity. We first
consider the case, which contains a complex two-form potential
which has U(1) charge . We find that a slight
generalization, where the two-form potential has an arbitrary charge , leads
to a five-dimensional model that exhibits second-order superconducting
transitions of p-wave type where the role of order parameter is played by
, provided . We identify the operator that condenses
in the dual CFT, which is closely related to Super Yang-Mills
theory with chemical potentials. Similar phase transitions between R-charged
black holes and black holes with 2-form hair are found in a generalized version
of the gauged supergravity Lagrangian where the two-forms have
charge .Comment: 35 pages, 14 figure
Vibrationally excited HC3N in NGC 4418
We investigate the molecular gas properties of the deeply obscured luminous
infrared galaxy NGC 4418. We address the excitation of the complex molecule
HC3N to determine whether its unusually luminous emission is related to the
nature of the buried nuclear source. We use IRAM 30m and JCMT observations of
rotational and vibrational lines of HC3N to model the excitation of the
molecule by means of rotational diagrams. We report the first confirmed
extragalactic detection of vibrational lines of HC3N. We detect 6 different
rotational transitions ranging from J=10-9 to J=30-29 in the ground vibrational
state and obtain a tentative detection of the J=38-37 line. We also detect 7
rotational transitions of the vibrationally excited states v6 and v7, with
angular momenta ranging from J=10-9 to 28-27. The energies of the upper states
of the observed transitions range from 20 to 850 K. In the optically thin
regime, we find that the rotational transitions of the vibrational ground state
can be fitted for two temperatures, 30 K and 260 K, while the vibrationally
excited levels can be fitted for a rotational temperature of 90 K and a
vibrational temperature of 500 K. In the inner 300 pc of NGC 4418, we estimate
a high HC3N abundance, of the order of 10^-7. The excitation of the HC3N
molecule responds strongly to the intense radiation field and the presence of
warm, dense gas and dust at the center of NGC 4418. The intense HC3N line
emission is a result of both high abundances and excitation. The properties of
the HC3N emitting gas are similar to those found for hot cores in Sgr B2, which
implies that the nucleus (< 300 pc) of NGC 4418 is reminiscent of a hot core.
The potential presence of a compact, hot component (T=500 K) is also discussed
Detection of Emission from the CN Radical in the Cloverleaf Quasar at z=2.56
We report the detection of CN(N=3-2) emission towards the Cloverleaf quasar
(z=2.56) based on observations with the IRAM Plateau de Bure Interferometer.
This is the first clear detection of emission from this radical at high
redshift. CN emission is a tracer of dense molecular hydrogen gas (n(H2) > 10^4
cm^{-3}) within star-forming molecular clouds, in particular in regions where
the clouds are affected by UV radiation. The HCN/CN intensity ratio can be used
as a diagnostic for the relative importance of photodissociation regions (PDRs)
in a source, and as a sensitive probe of optical depth, the radiation field,
and photochemical processes. We derive a lensing-corrected CN(N=3-2) line
luminosity of L'(CN(3-2) = (4.5 +/- 0.5) x 10^9 K km/s pc^2. The ratio between
CN luminosity and far-infrared luminosity falls within the scatter of the same
relationship found for low-z (ultra-) luminous infrared galaxies. Combining our
new results with CO(J=3-2) and HCN(J=1-0) measurements from the literature and
assuming thermal excitation for all transitions, we find a CO/CN luminosity
ratio of 9.3 +/- 1.9 and a HCN/CN luminosity ratio of 0.95 +/- 0.15. However,
we find that the CN(N=3-2) line is likely only subthermally excited, implying
that those ratios may only provide upper limits for the intrinsic 1-0 line
luminosity ratios. We conclude that, in combination with other molecular gas
tracers like CO, HCN, and HCO+, CN is an important probe of the physical
conditions and chemical composition of dense molecular environments at high
redshift.Comment: 6 pages, 5 figures, 1 table, to appear in ApJ (accepted May 23, 2007
Molecules as tracers of galaxy evolution: an EMIR survey. I. Presentation of the data and first results
We investigate the molecular gas properties of a sample of 23 galaxies in
order to find and test chemical signatures of galaxy evolution and to compare
them to IR evolutionary tracers. Observation at 3 mm wavelengths were obtained
with the EMIR broadband receiver, mounted on the IRAM 30 m telescope on Pico
Veleta, Spain. We compare the emission of the main molecular species with
existing models of chemical evolution by means of line intensity ratios
diagrams and principal component analysis. We detect molecular emission in 19
galaxies in two 8 GHz-wide bands centred at 88 and 112 GHz. The main detected
transitions are the J=1-0 lines of CO, 13CO, HCN, HNC, HCO+, CN, and C2H. We
also detect HC3N J=10-9 in the galaxies IRAS 17208, IC 860, NGC 4418, NGC 7771,
and NGC 1068. The only HC3N detections are in objects with HCO+/HCN<1 and warm
IRAS colours. Galaxies with the highest HC3N/HCN ratios have warm IRAS colours
(60/100 {\mu}m>0.8). The brightest HC3N emission is found in IC 860, where we
also detect the molecule in its vibrationally excited state.We find low HNC/HCN
line ratios (<0.5), that cannot be explained by existing PDR or XDR chemical
models. Bright HC3N emission in HCO+-faint objects may imply that these are not
dominated by X-ray chemistry. Thus the HCN/HCO+ line ratio is not, by itself, a
reliable tracer of XDRs. Bright HC3N and faint HCO+ could be signatures of
embedded starformation, instead of AGN activity
Waves on the surface of the Orion molecular cloud
Massive stars influence their parental molecular cloud, and it has long been
suspected that the development of hydrodynamical instabilities can compress or
fragment the cloud. Identifying such instabilities has proved difficult. It has
been suggested that elongated structures (such as the `pillars of creation')
and other shapes arise because of instabilities, but alternative explanations
are available. One key signature of an instability is a wave-like structure in
the gas, which has hitherto not been seen. Here we report the presence of
`waves' at the surface of the Orion molecular cloud near where massive stars
are forming. The waves seem to be a Kelvin-Helmholtz instability that arises
during the expansion of the nebula as gas heated and ionized by massive stars
is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur
- …
